scholarly journals Understanding the brain by controlling neural activity

2015 ◽  
Vol 370 (1677) ◽  
pp. 20140201 ◽  
Author(s):  
Kristine Krug ◽  
C. Daniel Salzman ◽  
Scott Waddell

Causal methods to interrogate brain function have been employed since the advent of modern neuroscience in the nineteenth century. Initially, randomly placed electrodes and stimulation of parts of the living brain were used to localize specific functions to these areas. Recent technical developments have rejuvenated this approach by providing more precise tools to dissect the neural circuits underlying behaviour, perception and cognition. Carefully controlled behavioural experiments have been combined with electrical devices, targeted genetically encoded tools and neurochemical approaches to manipulate information processing in the brain. The ability to control brain activity in these ways not only deepens our understanding of brain function but also provides new avenues for clinical intervention, particularly in conditions where brain processing has gone awry.

2021 ◽  
Author(s):  
Jorge Luis-Islas ◽  
Monica Luna ◽  
Benjamin Floran ◽  
Ranier Gutierrez

AbstractHow do animals experience brain manipulations? Optogenetics has allowed us to manipulate selectively and interrogate neural circuits underlying brain function in health and disease. However, in addition to their evoked physiological functions, it is currently unknown whether mice could perceive arbitrary optogenetic stimulations. To address this issue, mice were trained to report optogenetic stimulations to obtain rewards and avoid punishments. It was found that mice could perceive optogenetic manipulations regardless of the brain area modulated, their rewarding effects, or the stimulation of glutamatergic, GABAergic, and dopaminergic cell types. We named this phenomenon optoception. Our findings reveal that mice’s brains are capable of “monitoring” their self-activity via interoception, opening a new way to introduce information to the brain and control brain-computer interfaces.One Sentence SummaryBrain manipulations are perceived


1987 ◽  
Vol 252 (6) ◽  
pp. H1183-H1191
Author(s):  
C. Iadecola ◽  
P. M. Lacombe ◽  
M. D. Underwood ◽  
T. Ishitsuka ◽  
D. J. Reis

We studied whether adrenal medullary catecholamines (CAs) contribute to the metabolically linked increase in regional cerebral blood flow (rCBF) elicited by electrical stimulation of the dorsal medullary reticular formation (DMRF). Rats were anesthetized (alpha-chloralose, 30 mg/kg), paralyzed, and artificially ventilated. The DMRF was electrically stimulated with intermittent trains of pulses through microelectrodes stereotaxically implanted. Blood gases were controlled and, during stimulation, arterial pressure was maintained within the autoregulated range for rCBF. rCBF and blood-brain barrier (BBB) permeability were determined in homogenates of brain regions by using [14C]iodoantipyrine and alpha-aminoisobutyric acid (AIB), respectively, as tracers. Plasma CAs (epinephrine and norepinephrine) were measured radioenzymatically. DMRF stimulation increased rCBF throughout the brain (n = 5; P less than 0.01, analysis of variance) and elevated plasma CAs substantially (n = 4). Acute bilateral adrenalectomy abolished the increase in plasma epinephrine (n = 4), reduced the increases in flow (n = 6) in cerebral cortex (P less than 0.05), and abolished them elsewhere in brain (P greater than 0.05). Comparable effects on rCBF were obtained by selective adrenal demedullation (n = 7) or pretreatment with propranolol (1.5 mg/kg iv) (n = 5). DMRF stimulation did not increase the permeability of the BBB to AIB (n = 5). We conclude that the increases in rCBF elicited from the DMRF has two components, one dependent on, and the other independent of CAs. Since the BBB is impermeable to CAs and DMRF stimulation fails to open the BBB, the results suggest that DMRF stimulation allows, through a mechanism not yet determined, circulating CAs to act on brain and affect brain function.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Jay W. Reddy ◽  
Maya Lassiter ◽  
Maysamreza Chamanzar

Abstract Targeted light delivery into biological tissue is needed in applications such as optogenetic stimulation of the brain and in vivo functional or structural imaging of tissue. These applications require very compact, soft, and flexible implants that minimize damage to the tissue. Here, we demonstrate a novel implantable photonic platform based on a high-density, flexible array of ultracompact (30 μm × 5 μm), low-loss (3.2 dB/cm at λ = 680 nm, 4.1 dB/cm at λ = 633 nm, 4.9 dB/cm at λ = 532 nm, 6.1 dB/cm at λ = 450 nm) optical waveguides composed of biocompatible polymers Parylene C and polydimethylsiloxane (PDMS). This photonic platform features unique embedded input/output micromirrors that redirect light from the waveguides perpendicularly to the surface of the array for localized, patterned illumination in tissue. This architecture enables the design of a fully flexible, compact integrated photonic system for applications such as in vivo chronic optogenetic stimulation of brain activity.


2015 ◽  
Vol 370 (1677) ◽  
pp. 20140209 ◽  
Author(s):  
Sliman J. Bensmaia

The first decade and a half of the twenty-first century brought about two major innovations in neuroprosthetics: the development of anthropomorphic robotic limbs that replicate much of the function of a native human arm and the refinement of algorithms that decode intended movements from brain activity. However, skilled manipulation of objects requires somatosensory feedback, for which vision is a poor substitute. For upper-limb neuroprostheses to be clinically viable, they must therefore provide for the restoration of touch and proprioception. In this review, I discuss efforts to elicit meaningful tactile sensations through stimulation of neurons in somatosensory cortex. I focus on biomimetic approaches to sensory restoration, which leverage our current understanding about how information about grasped objects is encoded in the brain of intact individuals. I argue that not only can sensory neuroscience inform the development of sensory neuroprostheses, but also that the converse is true: stimulating the brain offers an exceptional opportunity to causally interrogate neural circuits and test hypotheses about natural neural coding.


1976 ◽  
Vol 4 (4) ◽  
pp. 211-222 ◽  
Author(s):  
U J Jovanović

Changes in the electro-encephalogram, and in the electro-oculogram electromyogram, ECG, blood supply, blood pressure, electrical skin activity and neurological/psychiatric findings, were investigated in 100 patients given single administrations of 200 mg of pentoxifylline (BL 191). It is concluded from the changes in the EEG wave patterns that pentoxifylline produces a beneficial effect on the cerebral processes contributing to bio-electrical brain activity. Pentoxifylline can be classed as a substance with microcirculatory/metabolic effects on the brain, which lead to stimulation of psychomotor behaviour.


2020 ◽  
Author(s):  
Sreejan Kumar ◽  
Cameron T. Ellis ◽  
Thomas O’Connell ◽  
Marvin M Chun ◽  
Nicholas B. Turk-Browne

AbstractThe extent to which brain functions are localized or distributed is a foundational question in neuroscience. In the human brain, common fMRI methods such as cluster correction, atlas parcellation, and anatomical searchlight are biased by design toward finding localized representations. Here we introduce the functional searchlight approach as an alternative to anatomical searchlight analysis, the most commonly used exploratory multivariate fMRI technique. Functional searchlight removes any anatomical bias by grouping voxels based only on functional similarity and ignoring anatomical proximity. We report evidence that visual and auditory features from deep neural networks and semantic features from a natural language processing model are more widely distributed across the brain than previously acknowledged. This approach provides a new way to evaluate and constrain computational models with brain activity and pushes our understanding of human brain function further along the spectrum from strict modularity toward distributed representation.


2020 ◽  
Author(s):  
Paul Triebkorn ◽  
Joelle Zimmermann ◽  
Leon Stefanovski ◽  
Dipanjan Roy ◽  
Ana Solodkin ◽  
...  

AbstractUsing The Virtual Brain (TVB, thevirtualbrian.org) simulation platform, we explored for 50 individual adult human brains (ages 18-80), how personalized connectome based brain network modelling captures various empirical observations as measured by functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). We compare simulated activity based on individual structural connectomes (SC) inferred from diffusion weighted imaging with fMRI and EEG in the resting state. We systematically explore the role of the following model parameters: conduction velocity, global coupling and graph theoretical features of individual SC. First, a subspace of the parameter space is identified for each subject that results in realistic brain activity, i.e. reproducing the following prominent features of empirical EEG-fMRI activity: topology of resting-state fMRI functional connectivity (FC), functional connectivity dynamics (FCD), electrophysiological oscillations in the delta (3-4 Hz) and alpha (8-12 Hz) frequency range and their bimodality, i.e. low and high energy modes. Interestingly, FCD fit, bimodality and static FC fit are highly correlated. They all show their optimum in the same range of global coupling. In other words, only when our local model is in a bistable regime we are able to generate switching of modes in our global network. Second, our simulations reveal the explicit network mechanisms that lead to electrophysiological oscillations, their bimodal behaviour and inter-regional differences. Third, we discuss biological interpretability of the Stefanescu-Jirsa-Hindmarsh-Rose-3D model when embedded inside the large-scale brain network and mechanisms underlying the emergence of bimodality of the neural signal.With the present study, we set the cornerstone for a systematic catalogue of spatiotemporal brain activity regimes generated with the connectome-based brain simulation platform The Virtual Brain.Author SummaryIn order to understand brain dynamics we use numerical simulations of brain network models. Combining the structural backbone of the brain, that is the white matter fibres connecting distinct regions in the grey matter, with dynamical systems describing the activity of neural populations we are able to simulate brain function on a large scale. In order to make accurate prediction with this network, it is crucial to determine optimal model parameters. We here use an explorative approach to adjust model parameters to individual brain activity, showing that subjects have their own optimal point in the parameter space, depending on their brain structure and function. At the same time, we investigate the relation between bistable phenomena on the scale of neural populations and the changed in functional connectivity on the brain network scale. Our results are important for future modelling approaches trying to make accurate predictions of brain function.


2013 ◽  
Vol 27 (2) ◽  
pp. 76-83 ◽  
Author(s):  
Casey S. Gilmore ◽  
George Fein

Event-related, target stimulus-phase-locked (evoked) brain activity in both the time and time-frequency (TF) domains (the P3b ERP; evoked theta oscillations) has been shown to be reduced in alcoholics. Recently, studies have suggested that there is alcohol-related information in the non-stimulus-phase-locked (induced) theta TF activity. We applied TF analysis to target stimulus event-related EEG recorded during an oddball task from 41 long-term abstinent alcoholics (LTAA) and 74 nonalcoholic controls (NAC) to investigate the relationship between P3b, evoked theta, and induced theta activity. Results showed that an event-related synchronization (ERS) of induced theta (1) was larger in LTAA compared to NAC, and (2) was sensitive to differences between LTAA and NAC groups that was independent of the differences accounted for by P3b amplitude or evoked theta. These findings suggest that increased induced theta ERS may likely be a biomarker for a morbid effect of alcohol abuse on brain function.


2013 ◽  
Vol 3 (2) ◽  
pp. 60-78
Author(s):  
Monika Máčajová

Despite of many worldwide economic problems, every developed society focuses its interest on education. This is undoubtedly caused by the fact that the societies have realized that education is the only way to progress and life quality improvement. Therefore, all educational systems in any period of their development have been making their efforts to seek and find newer approaches to more effective learning and teaching. The present study contributes to the line of works that look for new ways of education through discovering and learning principles of the functioning of the human brain. The paper introduces and explains teaching procedures which respect the needs of the brain. A specific emphasis is put on a) brain activity in various periods; b) evaluation procedures related to the theory of brain‑compatible learning; c) the need to articulate new knowledge and problem solving procedures with respect to optimal stimulation of the brain.


2018 ◽  
Vol 16 (4) ◽  
pp. 375-389
Author(s):  
Kittichai Tharawadeepimuk ◽  
Yodchanan Wongsawat

The goal of the present study was to investigate the effect of competition on brain activity representing aggression. Quantitative electroencephalograms (QEEGs) of Thai professional female soccer team players were analyzed in terms of aggression. The QEEGs of 17 soccer players were recorded three times: twice before a competition (once per week) and one week after the competition. There was a significant increase in the beta frequency band associated with the Fp1, Fp2, F7, and F8 positions as the competition approached. The changes in brain activity were observed in two patterns: the first was an increase in the intensity level of brain processing (presented in terms of brain topographic maps as absolute power), and the second was the magnitude of the amplitude at each of the EEG channels between the hemispheres (presented in terms of brain connectivity as amplitude asymmetry). Consequently, QEEG values were examined as they related to aggression. In the statistical analysis, paired-sample t tests confirmed that an aggressive phenomenon occurred as the competition approached. In addition, the aggressive phenomenon was found in the brain activity of players with defensive soccer positions.


Sign in / Sign up

Export Citation Format

Share Document