scholarly journals Distinct combinations of variant ionotropic glutamate 1 receptors mediate thermosensation and hygrosensation in Drosophila

2016 ◽  
Author(s):  
Zachary A. Knecht ◽  
Ana F. Silbering ◽  
Lina Ni ◽  
Mason Klein ◽  
Gonzalo Budelli ◽  
...  

AbstractIonotropic Receptors (IRs) are a large subfamily of variant ionotropic glutamate receptors present across Protostomia. While these receptors are most extensively studied for their roles in chemosensory detection in insects, recent work has implicated two family members, IR21a and IR25a, in thermosensation in Drosophila. Here we characterize one of the most deeply conserved receptors, IR93a, and show that it is co-expressed and functions with IR21a and IR25a to mediate physiological and behavioral responses to cool temperatures. IR93a is also co-expressed with IR25a and a distinct receptor, IR40a, in a discrete population of sensory neurons in the sacculus, a multi-chambered pocket within the antenna. We demonstrate that this combination of receptors is important for neuronal responses to dry air and behavioral discrimination of humidity differences. Our results identify IR93a as a common component of molecularly and cellularly distinct IR pathways underlying thermosensation and hygrosensation in insects.

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Zachary A Knecht ◽  
Ana F Silbering ◽  
Lina Ni ◽  
Mason Klein ◽  
Gonzalo Budelli ◽  
...  

Ionotropic Receptors (IRs) are a large subfamily of variant ionotropic glutamate receptors present across Protostomia. While these receptors are most extensively studied for their roles in chemosensory detection, recent work has implicated two family members, IR21a and IR25a, in thermosensation in Drosophila. Here we characterize one of the most evolutionarily deeply conserved receptors, IR93a, and show that it is co-expressed and functions with IR21a and IR25a to mediate physiological and behavioral responses to cool temperatures. IR93a is also co-expressed with IR25a and a distinct receptor, IR40a, in a discrete population of sensory neurons in the sacculus, a multi-chambered pocket within the antenna. We demonstrate that this combination of receptors is required for neuronal responses to dry air and behavioral discrimination of humidity differences. Our results identify IR93a as a common component of molecularly and cellularly distinct IR pathways important for thermosensation and hygrosensation in insects.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1753 ◽  
Author(s):  
Lena van Giesen ◽  
Paul A. Garrity

The ionotropic receptors (IRs) are a branch of the ionotropic glutamate receptor family and serve as important mediators of sensory transduction in invertebrates. Recent work shows that, though initially studied as olfactory receptors, the IRs also mediate the detection of taste, temperature, and humidity. Here, we summarize recent insights into IR evolution and its potential ecological significance as well as recent advances in our understanding of how IRs contribute to diverse sensory modalities.


2021 ◽  
Vol 13 ◽  
Author(s):  
Lina Ni

Ionotropic receptors (IRs) are a highly divergent subfamily of ionotropic glutamate receptors (iGluR) and are conserved across Protostomia, a major branch of the animal kingdom that encompasses both Ecdysozoa and Lophothrochozoa. They are broadly expressed in peripheral sensory systems, concentrated in sensory dendrites, and function in chemosensation, thermosensation, and hygrosensation. As iGluRs, four IR subunits form a functional ion channel to detect environmental stimuli. Most IR receptors comprise individual stimulus-specific tuning receptors and one or two broadly expressed coreceptors. This review summarizes the discoveries of the structure of IR complexes and the expression and function of each IR, as well as discusses the future direction for IR studies.


2019 ◽  
Vol 116 (40) ◽  
pp. 20158-20168 ◽  
Author(s):  
Hsueh-Ling Chen ◽  
Ulrich Stern ◽  
Chung-Hui Yang

To assess the biological value of environmental stimuli, animals’ sensory systems must accurately decode both the identities and the intensities of these stimuli. While much is known about the mechanism by which sensory neurons detect the identities of stimuli, less is known about the mechanism that controls how sensory neurons respond appropriately to different intensities of stimuli. The ionotropic receptor IR76b has been shown to be expressed in different Drosophila chemosensory neurons for sensing a variety of chemicals. Here, we show that IR76b plays an unexpected role in lowering the sensitivity of Drosophila sweet taste neurons. First, IR76b mutants exhibited clear behavioral responses to sucrose and acetic acid (AA) at concentrations that were too low to trigger observable behavioral responses from WT animals. Second, IR76b is expressed in many sweet neurons on the labellum, and these neurons responded to both sucrose and AA. Removing IR76b from the sweet neurons increased their neuronal responses as well as animals’ behavioral responses to sucrose and AA. Conversely, overexpressing IR76b in the sweet neurons decreased their neuronal as well as animals’ behavioral responses to sucrose and AA. Last, IR76b’s response-lowering ability has specificity: IR76b mutants and WT showed comparable responses to capsaicin when the mammalian capsaicin receptor VR1 was ectopically expressed in their sweet neurons. Our findings suggest that sensitivity of Drosophila sweet neurons to their endogenous ligands is actively limited by IR76b and uncover a potential molecular target by which contexts can modulate sensitivity of sweet neurons.


2021 ◽  
Vol 4 (Supplement_1) ◽  
pp. 10-11
Author(s):  
J Pujo ◽  
G De Palma ◽  
J Lu ◽  
S M Collins ◽  
P Bercik

Abstract Background Abdominal pain is a common complaint in patients with chronic gastrointestinal disorders. Accumulating evidence suggests that gut microbiota is an important determinant of gut function, including visceral sensitivity. Germ-free (GF) mice have been shown to display visceral hypersensitivity, which normalizes after colonization. Sex also appears to play a key role in visceral sensitivity, as women report more abdominal pain than men. Thus, both gut bacteria and sex are important in the regulation of gut nociception, but the underlying mechanisms remain poorly understood. Aims To investigate the role of gut microbiota and sex in abdominal pain. Methods We used primary cultures of sensory neurons from dorsal root ganglia (DRG) of female and male conventionally raised (SPF) or germ-free (GF) mice (7–18 weeks old). To study the visceral afferent activity in vitro, calcium mobilization in DRG sensory neurons was measured by inverted fluorescence microscope using a fluorescent calcium probe Fluo-4 (1mM). Two parameters were considered i) the percentage of responding neurons ii) the intensity of the neuronal response. First, DRG sensory neurons were stimulated by a TRPV1 agonist capsaicin (12.5nM, 125nM and 1.25µM) or by a mixture of G-protein coupled receptors agonist (GPCR: bradykinin, histamine and serotonin; 1µM, 10µM and 100µM). We next measured the neuronal production of substance P and calcitonin gene-related peptide (CGRP), two neuropeptides associated with nociception, in response to capsaicin (1.25µM) or GPCR agonists (100µM) by ELISA and EIA, respectively. Results The percentage of neurons responding to capsaicin and GPCR agonists was similar in male and female SPF and GF mice. However, the intensity of the neuronal response was higher in SPF male compared to SPF female in response to capsaicin (125nM: p=0.0336; 1.25µM: p=0.033) but not to GPCR agonists. Neuronal activation was similar in GF and SPF mice of both sexes after administration of capsaicin or GPCR agonists. Furthermore, substance P and CGRP production by sensory neurons induced by capsaicin or GPCR agonists was similar in SPF and GF mice, regardless of sex. However, while the response to capsaicin was similar, the GPCR agonists-induced production of substance P was higher in SPF male mice compared to SPF females (p=0.003). The GPCR agonists-induced production of CGRP was similar in SPF male and female mice. Conclusions Our data suggest that at the level of DRG neurons, the absence of gut microbiota does not predispose to visceral hypersensitivity. The intensity of DRG neuronal responses to capsaicin and the GPCR agonists-induced production of substance P are higher in male compared to female mice, in contrast to previously published studies in various models of acute and chronic pain. Further studies are thus needed to investigate the role of sex in visceral sensitivity. Funding Agencies CIHR


2021 ◽  
pp. 108631
Author(s):  
David Stroebel ◽  
Laetitia Mony ◽  
Pierre Paoletti

Sign in / Sign up

Export Citation Format

Share Document