chemosensory receptors
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 14)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Enrico Lanza ◽  
Martina Di Rocco ◽  
Silvia Schwartz ◽  
Davide Caprini ◽  
Edoardo Milanetti ◽  
...  

AbstractChemosensory receptors play a crucial role in distinguishing the wide range of volatile/soluble molecules by binding them with high accuracy. Chemosensation is the main sensory modality in organisms lacking long-range sensory mechanisms like vision/hearing. Despite its low number of sensory neurons, the nematode Caenorhabditis elegans possesses several chemosensory receptors, allowing it to detect about as many odorants as mammals. Here, we show that C. elegans displays attraction towards urine samples of women with breast cancer, avoiding control ones. Behavioral assays on animals lacking AWC sensory neurons demonstrate the relevance of these neurons in sensing cancer odorants: calcium imaging on AWC increases the accuracy of the discrimination (97.22%). Also, chemotaxis assays on animals lacking GPCRs expressed in AWC allow to identify receptors involved in binding cancer metabolites, suggesting that an alteration of a few metabolites is sufficient for the cancer discriminating behavior of C. elegans, which may help identify a fundamental fingerprint of breast cancer.


2021 ◽  
Author(s):  
Enrico Lanza ◽  
Martina Di Rocco ◽  
Silvia Schwartz ◽  
Davide Caprini ◽  
Edoardo Milanetti ◽  
...  

Abstract Chemosensory receptors play a crucial role in distinguishing the wide range of volatile/soluble molecules by binding them with high accuracy. Chemosensation is particularly developed in organisms lacking long-range sensory mechanisms like vision/hearing. Despite its low number of sensory neurons, the nematode Caenorhabditis elegans possesses several chemosensory receptors, allowing it to detect about as many odorants as mammals. Here, we show that C. elegans displays attraction towards urine samples of women with breast cancer, avoiding control ones. Behavioral assays on animals lacking AWC sensory neurons demonstrate the relevance of these neurons in sensing cancer odorants: calcium imaging on AWC increases the accuracy of the discrimination (97.22%). Also, chemotaxis assays on animals lacking GPCRs expressed in AWC allow to identify receptors involved in binding cancer metabolites, suggesting that an alteration of a few metabolites is sufficient for the cancer discriminating behavior of C. elegans, which may help identify a fundamental fingerprint of breast cancer.


Author(s):  
Sakura Tsuchiya ◽  
Yuko Terada ◽  
Minami Matsuyama ◽  
Toyomi Yamazaki-Ito ◽  
Keisuke Ito

ABSTRACT Humans sense taste and smell of various chemical substances through approximately 430 chemosensory receptors. The overall picture of ligand–chemosensory receptor interactions has been partially clarified because of numerous interactions. This study presents a new method that enables a rapid and simple screening of chemosensory receptors. It would be useful for identifying chemosensory receptors activated by taste and odor substances.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241758
Author(s):  
Quynh Anh Thi Nguyen ◽  
David Hillis ◽  
Sayako Katada ◽  
Timothy Harris ◽  
Crystal Pontrello ◽  
...  

Ethologically relevant chemical senses and behavioral habits are likely to coadapt in response to selection. As olfaction is involved in intrinsically motivated behaviors in mice, we hypothesized that selective breeding for a voluntary behavior would enable us to identify novel roles of the chemosensory system. Voluntary wheel running (VWR) is an intrinsically motivated and naturally rewarding behavior, and even wild mice run on a wheel placed in nature. We have established 4 independent, artificially evolved mouse lines by selectively breeding individuals showing high VWR activity (High Runners; HRs), together with 4 non-selected Control lines, over 88 generations. We found that several sensory receptors in specific receptor clusters were differentially expressed between the vomeronasal organ (VNO) of HRs and Controls. Moreover, one of those clusters contains multiple single-nucleotide polymorphism loci for which the allele frequencies were significantly divergent between the HR and Control lines, i.e., loci that were affected by the selective breeding protocol. These results indicate that the VNO has become genetically differentiated between HR and Control lines during the selective breeding process. Although the role of the vomeronasal chemosensory receptors in VWR activity remains to be determined, the current results suggest that these vomeronasal chemosensory receptors are important quantitative trait loci for voluntary exercise in mice. We propose that olfaction may play an important role in motivation for voluntary exercise in mammals.


Sign in / Sign up

Export Citation Format

Share Document