scholarly journals The Structure and Function of Ionotropic Receptors in Drosophila

2021 ◽  
Vol 13 ◽  
Author(s):  
Lina Ni

Ionotropic receptors (IRs) are a highly divergent subfamily of ionotropic glutamate receptors (iGluR) and are conserved across Protostomia, a major branch of the animal kingdom that encompasses both Ecdysozoa and Lophothrochozoa. They are broadly expressed in peripheral sensory systems, concentrated in sensory dendrites, and function in chemosensation, thermosensation, and hygrosensation. As iGluRs, four IR subunits form a functional ion channel to detect environmental stimuli. Most IR receptors comprise individual stimulus-specific tuning receptors and one or two broadly expressed coreceptors. This review summarizes the discoveries of the structure of IR complexes and the expression and function of each IR, as well as discusses the future direction for IR studies.

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1753 ◽  
Author(s):  
Lena van Giesen ◽  
Paul A. Garrity

The ionotropic receptors (IRs) are a branch of the ionotropic glutamate receptor family and serve as important mediators of sensory transduction in invertebrates. Recent work shows that, though initially studied as olfactory receptors, the IRs also mediate the detection of taste, temperature, and humidity. Here, we summarize recent insights into IR evolution and its potential ecological significance as well as recent advances in our understanding of how IRs contribute to diverse sensory modalities.


2011 ◽  
Vol 39 (3) ◽  
pp. 707-718 ◽  
Author(s):  
René A.W. Frank

Ionotropic receptors, including the NMDAR (N-methyl-D-aspartate receptor) mediate fast neurotransmission, neurodevelopment, neuronal excitability and learning. In the present article, the structure and function of the NMDAR is reviewed with the aim to condense our current understanding and highlight frontiers where important questions regarding the biology of this receptor remain unanswered. In the second part of the present review, new biochemical and genetic approaches for the investigation of ion channel receptor complexes will be discussed.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Zachary A Knecht ◽  
Ana F Silbering ◽  
Lina Ni ◽  
Mason Klein ◽  
Gonzalo Budelli ◽  
...  

Ionotropic Receptors (IRs) are a large subfamily of variant ionotropic glutamate receptors present across Protostomia. While these receptors are most extensively studied for their roles in chemosensory detection, recent work has implicated two family members, IR21a and IR25a, in thermosensation in Drosophila. Here we characterize one of the most evolutionarily deeply conserved receptors, IR93a, and show that it is co-expressed and functions with IR21a and IR25a to mediate physiological and behavioral responses to cool temperatures. IR93a is also co-expressed with IR25a and a distinct receptor, IR40a, in a discrete population of sensory neurons in the sacculus, a multi-chambered pocket within the antenna. We demonstrate that this combination of receptors is required for neuronal responses to dry air and behavioral discrimination of humidity differences. Our results identify IR93a as a common component of molecularly and cellularly distinct IR pathways important for thermosensation and hygrosensation in insects.


2016 ◽  
Author(s):  
Zachary A. Knecht ◽  
Ana F. Silbering ◽  
Lina Ni ◽  
Mason Klein ◽  
Gonzalo Budelli ◽  
...  

AbstractIonotropic Receptors (IRs) are a large subfamily of variant ionotropic glutamate receptors present across Protostomia. While these receptors are most extensively studied for their roles in chemosensory detection in insects, recent work has implicated two family members, IR21a and IR25a, in thermosensation in Drosophila. Here we characterize one of the most deeply conserved receptors, IR93a, and show that it is co-expressed and functions with IR21a and IR25a to mediate physiological and behavioral responses to cool temperatures. IR93a is also co-expressed with IR25a and a distinct receptor, IR40a, in a discrete population of sensory neurons in the sacculus, a multi-chambered pocket within the antenna. We demonstrate that this combination of receptors is important for neuronal responses to dry air and behavioral discrimination of humidity differences. Our results identify IR93a as a common component of molecularly and cellularly distinct IR pathways underlying thermosensation and hygrosensation in insects.


1999 ◽  
Vol 19 (2) ◽  
pp. 151-179 ◽  
Author(s):  
Anthone W. Dunah ◽  
Robert P. Yasuda ◽  
Jianhong Luo ◽  
Yuehua Wang ◽  
Kate L. Prybylowski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document