scholarly journals Performance Evaluation of Empirical Mode Decomposition Algorithms for Mental Task Classification

2016 ◽  
Author(s):  
Akshansh Gupta ◽  
Dhirendra Kumar ◽  
Anirban Chakraborti ◽  
Kiran Sharma

AbstractBrain Computer Interface (BCI), a direct pathway between the human brain and computer, is one of the most pragmatic applications of EEG signal. The electroencephalograph (EEG) signal is one of the monitoring techniques to observe brain functionality. Mental Task Classification (MTC) based on EEG signals is a demanding BCI. Success of BCI system depends on the efficient analysis of these signals. Empirical Mode Decomposition (EMD) is a filter based heuristic technique which is utilized to analyze EEG signal in recent past. There are several variants of EMD algorithms which have their own merits and demerits. In this paper, we have explored three variants of EMD algorithms named Empirical Mode Decomposition (EMD), Ensemble Empirical Mode Decomposition (EEMD) and Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) on EEG data for MTC-based BCI. Features are extracted from EEG signal in two phases; in the first phase, the signal is decomposed into different oscillatory functions with the help of different EMD algorithms and eight different parameters (features) are calculated for each function for compact representation in the second phase. These features are fed into Support Vector Machine (SVM) classifier to classify the different mental tasks. We have formulated two different types of MTC, the first one is binary and second one is multi-MTC. The proposed work outperforms the existing work for both binary and multi mental tasks classification.

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Liye Zhao ◽  
Wei Yu ◽  
Ruqiang Yan

This paper presents an improved gearbox fault diagnosis approach by integrating complementary ensemble empirical mode decomposition (CEEMD) with permutation entropy (PE). The presented approach identifies faults appearing in a gearbox system based on PE values calculated from selected intrinsic mode functions (IMFs) of vibration signals decomposed by CEEMD. Specifically, CEEMD is first used to decompose vibration signals characterizing various defect severities into a series of IMFs. Then, filtered vibration signals are obtained from appropriate selection of IMFs, and correlation coefficients between the filtered signal and each IMF are used as the basis for useful IMFs selection. Subsequently, PE values of those selected IMFs are utilized as input features to a support vector machine (SVM) classifier for characterizing the defect severity of a gearbox. Case study conducted on a gearbox system indicates the effectiveness of the proposed approach for identifying the gearbox faults.


2013 ◽  
Vol 409-410 ◽  
pp. 1071-1074
Author(s):  
Xiu Shan Jiang ◽  
Rui Feng Zhang ◽  
Liang Pan

Take Wuhan-Guangzhou high-speed railway for example. By adopting the empirical mode decomposition (EMD) attempt to analyze mode from the perspective of volatility of high speed railway passenger flow fluctuation signal. Constructed the ensemble empirical mode decomposition-gray support vector machine (EEMD-GSVM) short-term forecasting model which fuse the gray generation and support vector machine with the ensemble empirical mode decomposition (EEMD). Finally, by the accuracy of predicted results, explains the EEMD-GSVM model has the better adaptability.


2020 ◽  
Vol 10 (16) ◽  
pp. 5542 ◽  
Author(s):  
Rui Li ◽  
Chao Ran ◽  
Bin Zhang ◽  
Leng Han ◽  
Song Feng

Rolling bearings are fundamental elements that play a crucial role in the functioning of rotating machines; thus, fault diagnosis of rolling bearings is of great significance to reduce catastrophic failures and heavy economic loss. However, the vibration signals of rolling bearings are often nonlinear and nonstationary, resulting in difficulty for feature extraction and fault recognition. In this paper, a hybrid method for multiple fault diagnosis of rolling bearings is presented. The bearing vibration signals are decomposed with the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) to denoise and extract nonlinear entropy features. The nonlinear entropy features are further processed to select the more discriminative fault features and to reduce feature dimension. Then a multi-class intelligent recognition model based on ensemble support vector machine (ESVM) is constructed to diagnose different bearing fault modes as well as fault severities. The effectiveness of the proposed method is assessed via experimental case studies of rolling bearings under multiple operational conditions (i.e., speeds and loads). The results show that our method gives better diagnosis results as compared to some existing approaches.


2020 ◽  
Vol 26 (23-24) ◽  
pp. 2230-2242
Author(s):  
Ying Shi ◽  
Cai Yi ◽  
Jianhui Lin ◽  
Zhe Zhuang ◽  
Senhua Lai

In this article, a fault diagnosis approach for a pantograph is developed with collected vibration data from a test rig. Ensemble empirical mode decomposition is used to decompose the signals to get intrinsic mode function, and four kinds of entropies (permu1tation entropy, approximate entropy, sample entropy, and fuzzy entropy) reflecting the working state are extracted as the inputs of the support vector machine based on particle swarm optimization algorithm support vector machine. The effect of data length, embedded dimension, and other parameters on calculation of the entropy value has also been studied. Multiple feature ranking criteria are used to select the useful features and improve the fault diagnosis accuracy of certain measurement points. Experimental results on pantograph vibration analysis have then confirmed that the proposed method provides an effective measure for pantograph diagnosis.


2018 ◽  
Vol 50 (2) ◽  
pp. 498-516 ◽  
Author(s):  
Mohammad Rezaie-Balf ◽  
Ozgur Kisi ◽  
Lloyd H. C. Chua

Abstract Accurate prediction of pan evaporation (PE) is one of the crucial factors in water resources management and planning in agriculture. In this research, two hybrid models, self-adaptive time-frequency methodology, ensemble empirical mode decomposition (EEMD) coupled with support vector machine (EEMD-SVM) and EEMD model tree (EEMD-MT), were employed to forecast monthly PE. The EEMD-SVM and EEMD-MT were compared with single SVM and MT models in forecasting monthly PE, measured between 1975 and 2008, at Siirt and Diyarbakir stations in Turkey. The results were evaluated using four assessment criteria, Nash–Sutcliffe Efficiency (NSE), root mean square error (RMSE), performance index (PI), Willmott's index (WI), and Legates–McCabe's index (LMI). The EEMD-MT model respectively improved the accuracy of MT by 36 and 44.7% with respect to NSE and WI in the testing stage for the Siirt station. For the Diyarbakir station, the improvements in results were less spectacular, with improvements in NSE (1.7%) and WI (2.2%), respectively, in the testing stage. The overall results indicate that the proposed pre-processing technique is very promising for complex time series forecasting and further studies incorporating this technique are recommended.


Sign in / Sign up

Export Citation Format

Share Document