scholarly journals Role of monkeys in the sylvatic cycle of chikungunya virus in Senegal

2016 ◽  
Author(s):  
Benjamin M. Althouse ◽  
Mathilde Guerbois ◽  
Derek A. T. Cummings ◽  
Ousmane M. Diop ◽  
Ousmane Faye ◽  
...  

AbstractAthropod-borne viruses (arboviruses) pose the greatest risk of spillover into humans of any class of pathogens. Such spillover may occur as a one-step jump from a reservoir host species into humans or as a two-step jump from the reservoir to a different amplification host species and thence to humans. Despite the widespread havoc wreaked by emerging arboviruses, little is known about their transmission dynamics in reservoir and amplification hosts. Here we used serosurveillance and mathematical modeling to elucidate the role of monkeys in the sylvatic, enzootic cycle of chikungunya virus (CHIKV). Over three years, 219 African green monkeys, 78 patas monkeys, and 440 Guinea baboons were captured in the region surrounding Kedougou, Senegal. The age of each animal was determined by anthropometry and dentition, and exposure to CHIKV was determined by detection of neutralizing antibodies. We estimate age-specific CHIKV seroprevalence, force of infection (FoI), and basic reproductive number (R0) in each species. Among the different species, CHIKV Fol ranged from 0.13 to 1.12 (95% CI, 0.81–2.28) and R0 ranged from 1.5 (95% CI, 1.3–1.9) to 6.6 (95% CI, 5.1–10.4). CHIKV infection of infant monkeys was detected even when the virus was not detected in a concurrent survey of primatophilic mosquitoes and when population seropositivity, and therefore immunity, was too high for monkeys themselves to support continuous CHIKV transmission. We therefore conclude that monkeys in this region serve primarily as amplification rather than reservoir hosts of CHIKV. Additional efforts are needed to identify other vertebrate hosts capable of supporting continuous circulation.

2019 ◽  
Vol 27 (1) ◽  
pp. 241-266
Author(s):  
FABIO SANCHEZ ◽  
JORGE ARROYO-ESQUIVEL ◽  
PAOLA VÁSQUEZ

For decades, dengue virus has caused major problems for public health officials in tropical and subtropical countries around the world. We construct a compartmental model that includes the role of hospitalized individuals in the transmission dynamics of dengue in Costa Rica. The basic reproductive number, R0, is computed, as well as a sensitivity analysis on R0 parameters. The global stability of the disease-free equilibrium is established. Numerical simulations under specific parameter scenarios are performed to determine optimal prevention/control strategies.


Parasitology ◽  
2015 ◽  
Vol 142 (9) ◽  
pp. 1202-1214 ◽  
Author(s):  
JOSÉ E. CALZADA ◽  
AZAEL SALDAÑA ◽  
KADIR GONZÁLEZ ◽  
CHYSTRIE RIGG ◽  
VANESSA PINEDA ◽  
...  

SUMMARYAmerican cutaneous leishmaniasis (ACL) is a complex disease with a rich diversity of animal host species. This diversity imposes a challenge, since understanding ACL transmission requires the adequate identification of reservoir hosts, those species able to be a source of additional infections. In this study we present results from an ACL cross-sectional serological survey of 51 dogs (Canis familiaris), where we used diagnostic tests that measure dog's exposure toLeishmaniaspp. parasites. We did our research in Panamá, at a village that has undergone significant ecosystem level transformations. We found an ACL seroprevalence of 47% among dogs, and their exposure was positively associated with dog age and abundance of sand fly vectors in the houses of dog owners. Using mathematical models, which were fitted to data on the proportion of positive tests as function of dog age, we estimated a basic reproductive number (R0±s.e.) of 1·22 ± 0·09 that indicates the disease is endemically established in the dogs. Nevertheless, this information by itself is insufficient to incriminate dogs as ACL reservoirs, given the inability to find parasites (or their DNA) in seropositive dogs and previously reported failures to experimentally infect vectors feeding on dogs with ACL parasites.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Benjamin M. Althouse ◽  
Mathilde Guerbois ◽  
Derek A. T. Cummings ◽  
Ousmane M. Diop ◽  
Ousmane Faye ◽  
...  

2015 ◽  
Vol 23 (supp01) ◽  
pp. S17-S31
Author(s):  
GEISER VILLAVICENCIO-PULIDO ◽  
IGNACIO BARRADAS ◽  
LUNA BEATRIZ

We present a model describing the dynamics of an infectious disease for which the force of infection is diminished through a reaction of the susceptible to the number of infected individuals. We show that, even though the structure of the model is a simple one, different kinds of backward bifurcation can appear for values of the basic reproductive number bigger than one. Under some conditions on the parameters, multiple endemic equilibria may appear for values of the basic reproductive number less or greater than one.


Author(s):  
C. Brandon Ogbunugafor ◽  
Miles Miller-Dickson ◽  
Victor A. Meszaros ◽  
Lourdes M. Gomez ◽  
Anarina L. Murillo ◽  
...  

ABSTRACTCOVID-19 has circled the globe, rapidly expanding into a pandemic within a matter of weeks. While early studies revealed important features of SARS-CoV-2 transmission, the role of variation in free-living virus survival in modulating the dynamics of outbreaks remains unclear and controversial. Using an empirically determined understanding of the natural history of SARS-CoV-2 infection and detailed, country-level case data, we elucidate how variation in free-living virus survival influences key features of COVID-19 epidemics. Our findings suggest that environmental transmission can have a subtle, yet significant influence on COVID-19’s basic reproductive number () and other key signatures of outbreak intensity. Summarizing, we propose that variation in environmental transmission may explain some observed differences in disease dynamics from setting to setting, and can inform public health interventions.


Author(s):  
Daniel Felipe Barrantes Murillo ◽  
Marta Piche-Ovares ◽  
Jose Carlos Gamboa Solano ◽  
Luis Mario Romero ◽  
Claudio Soto-Garita ◽  
...  

Arboviruses have two ecological transmission cycles, sylvatic and urban. For some, the sylvatic cycle has not been thoroughly described in America. To study the role of wildlife in a putative sylvatic cycle, we sampled free-ranging bats and birds in two arbovirus endemic locations and analyzed them using molecular, serological, and histological methods. No current infection was detected, and no significant arbovirus-associated histological changes were observed. Neutralizing antibodies were detected against selected arboviruses. In bats, positivity in 34.95% for DENV-1, 16.26% for DENV-2, 5.69% for DENV-3, 4.87% for DENV-4, 2.43% for WNV, 4.87% for SLEV, 0,81% for YFV, 7.31% for EEEV, and 0.81% for VEEV was found. Antibodies against ZIKV were not detected. In birds, PRNT results were positive against WNV in 0.80%, SLEV in 5.64%, EEEV in 8.4%, and VEEV in 5.63%. An additional retrospective PRNT analysis was performed using bat samples from three additional DENV endemic sites resulting in a 3.27% prevalence for WNV and 1.63% for SLEV. Interestingly one sample resulted unequivocally WNV positive confirmed by serum titration. These results suggest that free-ranging bats and birds are exposed to not currently reported hyperendemic-human infecting Flavivirus and Alphavirus, however, their role as reservoirs or hosts is still undetermined.


2008 ◽  
Vol 137 (1) ◽  
pp. 48-57 ◽  
Author(s):  
T. VAN EFFELTERRE ◽  
Z. SHKEDY ◽  
M. AERTS ◽  
G. MOLENBERGHS ◽  
P. VAN DAMME ◽  
...  

SUMMARYThe WAIFW matrix (Who Acquires Infection From Whom) is a central parameter in modelling the spread of infectious diseases. The calculation of the basic reproductive number (R0) depends on the assumptions made about the transmission within and between age groups through the structure of the WAIFW matrix and different structures might lead to different estimates for R0 and hence different estimates for the minimal immunization coverage needed for the elimination of the infection in the population. In this paper, we estimate R0 for varicella in Belgium. The force of infection is estimated from seroprevalence data using fractional polynomials and we show how the estimate of R0 is heavily influenced by the structure of the WAIFW matrix.


2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Paul Fenimore ◽  
Benjamin McMahon ◽  
Nicolas Hengartner ◽  
Timothy Germann ◽  
Judith Mourant

ObjectiveWe will demonstrate tools that allow mechanistic contraints on disease progression and epidemic spread to play off against interventions, mitigation, and control measures. The fundamental mechanisms of disease progression and epidemic spread provide important constraints on interpreting changing epidemic cases counts with time and geography in the context of on-going interventions, mitigations, and controls. Models such as these that account for the effects of human actions can also allow evaluation of the importance of categories of epidemic and disease controls.IntroductionWe present the EpiEarly, EpiGrid, and EpiCast tools for mechanistically-based biological decision support. The range of tools covers coarse-, medium-, and fine-grained models. The coarse-grained, aggregated time-series only data tool (EpiEarly) provides a statistic quantifying epidemic growth potential and associated uncertainties. The medium grained, geographically-resolved model (EpiGrid) is based on differential equation type simulations of disease and epidemic progression in the presence of various human interventions geared toward understanding the role of infection control, early vs. late diagnosis, vaccination, etc. in outbreak control. A fine-grained hybrid-agent epidemic model (EpiCast) with diurnal agent travel and contagion allows the analysis of the importance of contact-networks, travel, and detailed intervention strategies for the control of outbreaks and epidemics.MethodsWe use three types of methods for simulation and analysis. They are: (1) Bayesian and regression methods allowing estimation of the basic reproductive number from case-count data; (2) ordinary-differential equation integration with modifications to account for discreteness of disease spread when case counts are small (we include space- and time-dependent effects); and (3) methods that hybridize agent-based travel, mixing, and disease progression with nested-mass action contagion (i.e. not fully agent-based). From the perspective of decision support, the crucial feature of mechanistic infectious epidemiological models is a way to capture the human interventions that determine epidemic outcome. Categorizing types of mitigation into those that change the force of infection, and those that branch disease progression allows a common framework that can be extended from medium-grained models through fine-grained. Our canonical example is our EpiGrid tool which allows for the modulation of the force of infection (i.e. contagion) with time (and potentially space), the vaccination of a susceptible population in a geographically-targeted manner, movement controls, and branching our disease progression model to account for early- vs. late-intervention during host disease progression.ResultsWe will present analysis of diseases that exemplify the various aspects of analysis in support of outbreak and epidemic control. Human and animal diseases relevant to this demonstration include rinderpest, avian influenza, and measles. We will begin with EpiEarly’s estimate of epidemic potential using aggregated time-dependent case-count data. The key observation for EpiEarly is that under a wide range of situations a disease's reproductive number should be generalized to a distribution of possibilities to account for inherent randomness and other factors (including the variability of a disease contact network). We will then continue with a demonstration of EpiGrid’s capabilities for understanding and modelling the role of interventions including contagion control (the force of infection), treatment (changing disease progression and infectiousness depending on treatment), vaccination, culling, and movement controls. We will briefly touch on the capabilities of EpiCast for more detailed analysis of specific intervention strategies.ConclusionsWe will demonstrate examples where modeling either contributed or plausibly would contribute to informing epidemic and outbreak control constrained by the possibilities of the underlying epidemic and disease dynamics.


2017 ◽  
Vol 5 (1) ◽  
Author(s):  
Abdourahmane Sow ◽  
Oumar Faye ◽  
Mawlouth Diallo ◽  
Diawo Diallo ◽  
Rubing Chen ◽  
...  

Abstract Background In Senegal, Chikungunya virus (CHIKV), which is an emerging mosquito-borne alphavirus, circulates in a sylvatic and urban/domestic cycle and has caused sporadic human cases and epidemics since 1960s. However, the real impact of the CHIKV sylvatic cycle in humans and mechanisms underlying its emergence still remains unknown. Methodology One thousand four hundred nine suspect cases of CHIKV infection, recruited from 5 health facilities located in Kedougou region, south-eastern Senegal, between May 2009 to March 2010, together with 866 serum samples collected from schoolchildren from 4 elementary schools in May and November 2009 from Kedougou were screened for anti-CHIKV immunoglobulin (Ig)M antibodies and, when appropriate, for viral nucleic acid by real-time polymerase chain reaction (rPCR) and virus isolation. In addition, mosquitoes collected in the same area from May 2009 to January 2010 were tested for CHIKV by rPCR and by virus isolation, and 116 monkeys sera collected from March 2010 to May 2010 were tested for anti-CHIKV IgM and neutralizing antibodies. Results The main clinical manifestations of the CHIKV suspect cases were headache, myalgia, and arthralgia. Evidence for CHIKV infection was observed in 1.4% (20 of 1409) of patients among suspect cases. No significant difference was observed among age or sex groups. In addition, 25 (2.9%) students had evidence of CHIKV infection in November 2009. Chikungunya virus was detected in 42 pools of mosquitoes, mainly from Aedes furcifer, and 83% of monkeys sampled were seropositive. Conclusions Our findings further documented that CHIKV is maintained in a sylvatic transmission cycle among monkeys and Aedes mosquitoes in Kedougou, and humans become infected by exposure to the virus in the forest.


Sign in / Sign up

Export Citation Format

Share Document