scholarly journals Measuring speaker-listener neural coupling with functional near infrared spectroscopy

2016 ◽  
Author(s):  
Yichuan Liu ◽  
Elise A. Piazza ◽  
Erez Simony ◽  
Patricia A. Shewokis ◽  
Banu Onaral ◽  
...  

AbstractThe present study investigates brain-to-brain coupling, defined as inter-subject correlations in the hemodynamic response, during natural verbal communication. We used functional near-infrared spectroscopy (fNIRS) to record brain activity of speakers telling stories and listeners comprehending audio recordings of these stories. Listeners’ brain activity was correlated with speakers’ with a delay. This between-brain correlation disappeared when verbal communication failed. We further compared the fNIRS and functional Magnetic Resonance Imaging (fMRI) recordings of listeners comprehending the same story and found a relationship between the fNIRS oxygenated-hemoglobin concentration changes and the fMRI BOLD in brain areas associated with speech comprehension. This correlation between fNIRS and fMRI was only present when data from the same story were compared between the two modalities and vanished when data from different stories were compared; this cross-modality consistency further highlights the reliability of the spatiotemporal brain activation pattern as a measure of story comprehension. Our findings suggest that fNIRS is a powerful tool for investigating brain-to-brain coupling during verbal communication. As fNIRS sensors are relatively low-cost and can even be built into wireless, portable, battery-operated systems, these results highlight the potential of broad utilization of this approach in everyday settings for augmenting communication and interaction.

2011 ◽  
Vol 138-139 ◽  
pp. 553-559
Author(s):  
Ting Li ◽  
Zhi Li Zhang ◽  
Yi Zheng

Although functional near-infrared spectroscopy (fNIRS) has been developing as a useful tool for monitoring functional brain activity since the early 1990s, the quantification of hemoglobin concentration changes is still controversial and there are few detailed reports especially for continuous-wave (CW) instruments. By means of a two-layer model experiment mimicking hemodynamic changes in brain and mathematical analysis based on the modified Beer-Lambert law, we established an algorithm for a CW functional near-infrared spectroscopy (CW-fNIRS). The accuracy of this algorithm was validated both in comparison with direct measurements on brain tissue model and in vivo measurement upon human valsalva maneuver. This described method can also be utilized for other CW-fNIRS instruments to establish measuring algorithm.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2362 ◽  
Author(s):  
Alexander E. Hramov ◽  
Vadim Grubov ◽  
Artem Badarin ◽  
Vladimir A. Maksimenko ◽  
Alexander N. Pisarchik

Sensor-level human brain activity is studied during real and imaginary motor execution using functional near-infrared spectroscopy (fNIRS). Blood oxygenation and deoxygenation spatial dynamics exhibit pronounced hemispheric lateralization when performing motor tasks with the left and right hands. This fact allowed us to reveal biomarkers of hemodynamical response of the motor cortex on the motor execution, and use them for designing a sensing method for classification of the type of movement. The recognition accuracy of real movements is close to 100%, while the classification accuracy of imaginary movements is lower but quite high (at the level of 90%). The advantage of the proposed method is its ability to classify real and imaginary movements with sufficiently high efficiency without the need for recalculating parameters. The proposed system can serve as a sensor of motor activity to be used for neurorehabilitation after severe brain injuries, including traumas and strokes.


2005 ◽  
Vol 37 (13-15) ◽  
pp. 1319-1338 ◽  
Author(s):  
Takashi Kojima ◽  
Hitoshi Tsunashima ◽  
Tomoki Shiozawa ◽  
Hiroki Takada ◽  
Takuji Sakai

2020 ◽  
Vol 10 (6) ◽  
pp. 342 ◽  
Author(s):  
Fabian Herold ◽  
Thomas Gronwald ◽  
Felix Scholkmann ◽  
Hamoon Zohdi ◽  
Dominik Wyser ◽  
...  

In the literature, it is well established that regular physical exercise is a powerful strategy to promote brain health and to improve cognitive performance. However, exact knowledge about which exercise prescription would be optimal in the setting of exercise–cognition science is lacking. While there is a strong theoretical rationale for using indicators of internal load (e.g., heart rate) in exercise prescription, the most suitable parameters have yet to be determined. In this perspective article, we discuss the role of brain-derived parameters (e.g., brain activity) as valuable indicators of internal load which can be beneficial for individualizing the exercise prescription in exercise–cognition research. Therefore, we focus on the application of functional near-infrared spectroscopy (fNIRS), since this neuroimaging modality provides specific advantages, making it well suited for monitoring cortical hemodynamics as a proxy of brain activity during physical exercise.


2015 ◽  
Vol 54 (3) ◽  
pp. 576 ◽  
Author(s):  
Amal Kassab ◽  
Jérôme Le Lan ◽  
Phetsamone Vannasing ◽  
Mohamad Sawan

Sign in / Sign up

Export Citation Format

Share Document