scholarly journals Untangling cortical maps in mouse primary visual cortex

2017 ◽  
Author(s):  
Luis O. Jimenez ◽  
Elaine Tring ◽  
Joshua T. Trachtenberg ◽  
Dario L. Ringach

Local populations of neurons in mouse visual cortex exhibit diverse tuning preferences. We show this seeming disorder can be untangled — the similarity of tuning between pairs of neurons is correlated better with the overlap between their receptive fields in visual space rather than with their distance in the cortex. These findings are consistent with the hypothesis that salt-and-pepper maps arise from the lateral dispersion of clonally related neurons.

2016 ◽  
Author(s):  
Inbal Ayzenshtat ◽  
Jesse Jackson ◽  
Rafael Yuste

AbstractThe response properties of neurons to sensory stimuli have been used to identify their receptive fields and functionally map sensory systems. In primary visual cortex, most neurons are selective to a particular orientation and spatial frequency of the visual stimulus. Using two-photon calcium imaging of neuronal populations from the primary visual cortex of mice, we have characterized the response properties of neurons to various orientations and spatial frequencies. Surprisingly, we found that the orientation selectivity of neurons actually depends on the spatial frequency of the stimulus. This dependence can be easily explained if one assumed spatially asymmetric Gabor-type receptive fields. We propose that receptive fields of neurons in layer 2/3 of visual cortex are indeed spatially asymmetric, and that this asymmetry could be used effectively by the visual system to encode natural scenes.Significance StatementIn this manuscript we demonstrate that the orientation selectivity of neurons in primary visual cortex of mouse is highly dependent on the stimulus SF. This dependence is realized quantitatively in a decrease in the selectivity strength of cells in non-optimum SF, and more importantly, it is also evident qualitatively in a shift in the preferred orientation of cells in non-optimum SF. We show that a receptive-field model of a 2D asymmetric Gabor, rather than a symmetric one, can explain this surprising observation. Therefore, we propose that the receptive fields of neurons in layer 2/3 of mouse visual cortex are spatially asymmetric and this asymmetry could be used effectively by the visual system to encode natural scenes.Highlights–Orientation selectivity is dependent on spatial frequency.–Asymmetric Gabor model can explain this dependence.


2013 ◽  
Vol 31 (1) ◽  
pp. 85-98 ◽  
Author(s):  
HSIN-HAO YU ◽  
MARCELLO G.P. ROSA

AbstractAlthough the primary visual cortex (V1) is one of the most extensively studied areas of the primate brain, very little is known about how the far periphery of visual space is represented in this area. We characterized the physiological response properties of V1 neurons in anaesthetized marmoset monkeys, using high-contrast drifting gratings. Comparisons were made between cells with receptive fields located in three regions of V1, defined by eccentricity: central (3–5°), near peripheral (5–15°), and far peripheral (>50°). We found that orientation selectivity of individual cells was similar from the center to the far periphery. Nonetheless, the proportion of orientation-selective neurons was higher in central visual field representation than in the peripheral representations. In addition, there were similar proportions of cells representing all orientations, with the exception of the representation of the far periphery, where we detected a bias favoring near-horizontal orientations. The proportions of direction-selective cells were similar throughout V1. When the center/surround organization of the receptive fields was tested with gratings with varying diameters, we found that the population of neurons that was suppressed by large gratings was smaller in the far periphery, although the strength of suppression in these cells tended to be stronger. In addition, the ratio between the diameters of the excitatory centers and suppressive surrounds was similar across the entire visual field. These results suggest that, superimposed on the broad uniformity of V1, there are subtle physiological differences, which indicate that spatial information is processed differently in the central versus far peripheral visual fields.


1998 ◽  
Vol 78 (2) ◽  
pp. 467-485 ◽  
Author(s):  
CHARLES D. GILBERT

Gilbert, Charles D. Adult Cortical Dynamics. Physiol. Rev. 78: 467–485, 1998. — There are many influences on our perception of local features. What we see is not strictly a reflection of the physical characteristics of a scene but instead is highly dependent on the processes by which our brain attempts to interpret the scene. As a result, our percepts are shaped by the context within which local features are presented, by our previous visual experiences, operating over a wide range of time scales, and by our expectation of what is before us. The substrate for these influences is likely to be found in the lateral interactions operating within individual areas of the cerebral cortex and in the feedback from higher to lower order cortical areas. Even at early stages in the visual pathway, cells are far more flexible in their functional properties than previously thought. It had long been assumed that cells in primary visual cortex had fixed properties, passing along the product of a stereotyped operation to the next stage in the visual pathway. Any plasticity dependent on visual experience was thought to be restricted to a period early in the life of the animal, the critical period. Furthermore, the assembly of contours and surfaces into unified percepts was assumed to take place at high levels in the visual pathway, whereas the receptive fields of cells in primary visual cortex represented very small windows on the visual scene. These concepts of spatial integration and plasticity have been radically modified in the past few years. The emerging view is that even at the earliest stages in the cortical processing of visual information, cells are highly mutable in their functional properties and are capable of integrating information over a much larger part of visual space than originally believed.


2018 ◽  
Author(s):  
J.J. Pattadkal ◽  
G. Mato ◽  
C. van Vreeswijk ◽  
N. J. Priebe ◽  
D. Hansel

SummaryWe study the connectivity principles underlying the emergence of orientation selectivity in primary visual cortex (V1) of mammals lacking an orientation map. We present a computational model in which random connectivity gives rise to orientation selectivity that matches experimental observations. It predicts that mouse V1 neurons should exhibit intricate receptive fields in the two-dimensional frequency domain, causing shift in orientation preferences with spatial frequency. We find evidence for these features in mouse V1 using calcium imaging and intracellular whole cell recordings.


2010 ◽  
Vol 13 (9) ◽  
pp. 1144-1149 ◽  
Author(s):  
Spencer L Smith ◽  
Michael Häusser

2000 ◽  
Vol 84 (4) ◽  
pp. 2048-2062 ◽  
Author(s):  
Mitesh K. Kapadia ◽  
Gerald Westheimer ◽  
Charles D. Gilbert

To examine the role of primary visual cortex in visuospatial integration, we studied the spatial arrangement of contextual interactions in the response properties of neurons in primary visual cortex of alert monkeys and in human perception. We found a spatial segregation of opposing contextual interactions. At the level of cortical neurons, excitatory interactions were located along the ends of receptive fields, while inhibitory interactions were strongest along the orthogonal axis. Parallel psychophysical studies in human observers showed opposing contextual interactions surrounding a target line with a similar spatial distribution. The results suggest that V1 neurons can participate in multiple perceptual processes via spatially segregated and functionally distinct components of their receptive fields.


1995 ◽  
Vol 74 (2) ◽  
pp. 779-792 ◽  
Author(s):  
A. Das ◽  
C. D. Gilbert

1. Receptive field (RF) sizes of neurons in adult primary visual cortex are dynamic, expanding and contracting in response to alternate stimulation outside and within the RF over periods ranging from seconds to minutes. The substrate for this dynamic expansion was shown to lie in cortex, as opposed to subcortical parts of the visual pathway. The present study was designed to examine changes in cortical connection strengths that could underlie this observed plasticity by measuring the changes in cross-correlation histograms between pairs of primary visual cortex neurons that are induced to dynamically change their RF sizes. 2. Visually driven neural activity was recorded from single units in the superficial layers of primary visual cortex in adult cats, with two independent electrodes separated by 0.1–5 mm at their tips, and cross-correlated on-line. The neurons were then conditioned by stimulation with an “artificial scotoma,” a field of flashing random dots filling the region of visual space around a blank rectangle enclosing the RFs of the recorded neurons. The neuronal RFs were tested for expansion and their visually driven output again cross-correlated. After this, the neurons were stimulated vigorously through their RF centers to induce the field to collapse, and the visually driven output from the collapsed RFs was again cross-correlated. Cross-correlograms obtained before and after conditioning, and after RF collapse, were normalized by their flanks to control for changes in peak size due solely to fluctuations in spike rate. 3. A total of 37 pairs of neurons that showed distinct cross-correlogram peaks, and whose RF borders were clearly discernible both before and after conditioning, were used in the final analysis. Of these neuron pairs, conditioning led to a clear expansion of RF boundaries in 28 pairs, whereas in 9 pairs the RFs did not expand. RFs that did expand showed no significant shifts in their orientation preference, orientation selectivity, or ocularity. 4. When the RFs of a pair of neurons expanded with conditioning, the area of the associated flank-normalized cross-correlogram peaks also increased (by a factor ranging from 0.84 up to 3.5). Correlograms returned to their preconditioning values when RFs collapsed.(ABSTRACT TRUNCATED AT 400 WORDS)


1997 ◽  
Vol 9 (5) ◽  
pp. 959-970 ◽  
Author(s):  
Christian Piepenbrock ◽  
Helge Ritter ◽  
Klaus Obermayer

Correlation-based learning (CBL) has been suggested as the mechanism that underlies the development of simple-cell receptive fields in the primary visual cortex of cats, including orientation preference (OR) and ocular dominance (OD) (Linsker, 1986; Miller, Keller, & Stryker, 1989). CBL has been applied successfully to the development of OR and OD individually (Miller, Keller, & Stryker, 1989; Miller, 1994; Miyashita & Tanaka, 1991; Erwin, Obermayer, & Schulten, 1995), but the conditions for their joint development have not been studied (but see Erwin & Miller, 1995, for independent work on the same question) in contrast to competitive Hebbian models (Obermayer, Blasdel, & Schulten, 1992). In this article, we provide insight into why this has been the case: OR and OD decouple in symmetric CBL models, and a joint development of OR and OD is possible only in a parameter regime that depends on nonlinear mechanisms.


Sign in / Sign up

Export Citation Format

Share Document