scholarly journals Gene length and detection bias in single cell RNA sequencing protocols

2017 ◽  
Author(s):  
Belinda Phipson ◽  
Luke Zappia ◽  
Alicia Oshlack

AbstractSingle cell RNA sequencing (scRNA-seq) has rapidly gained popularity for profiling transcriptomes of hundreds to thousands of single cells. This technology has led to the discovery of novel cell types and revealed insights into the development of complex tissues. However, many technical challenges need to be overcome during data generation. Due to minute amounts of starting material, samples undergo extensive amplification, increasing technical variability. A solution for mitigating amplification biases is to include Unique Molecular Identifiers (UMIs), which tag individual molecules. Transcript abundances are then estimated from the number of unique UMIs aligning to a specific gene and PCR duplicates resulting in copies of the UMI are not included in expression estimates. Here we investigate the effect of gene length bias in scRNA-Seq across a variety of datasets differing in terms of capture technology, library preparation, cell types and species. We find that scRNA-seq datasets that have been sequenced using a full-length transcript protocol exhibit gene length bias akin to bulk RNA-seq data. Specifically, shorter genes tend to have lower counts and a higher rate of dropout. In contrast, protocols that include UMIs do not exhibit gene length bias, and have a mostly uniform rate of dropout across genes of varying length. Across four different scRNA-Seq datasets profiling mouse embryonic stem cells (mESCs), we found the subset of genes that are only detected in the UMI datasets tended to be shorter, while the subset of genes detected only in the full-length datasets tended to be longer. We briefly discuss the role of these genes in the context of differential expression testing and GO analysis. In addition, despite clear differences between UMI and full-length transcript data, we illustrate that full-length and UMI data can be combined to reveal underlying biology influencing expression of mESCs.

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 595 ◽  
Author(s):  
Belinda Phipson ◽  
Luke Zappia ◽  
Alicia Oshlack

Background: Single cell RNA sequencing (scRNA-seq) has rapidly gained popularity for profiling transcriptomes of hundreds to thousands of single cells. This technology has led to the discovery of novel cell types and revealed insights into the development of complex tissues. However, many technical challenges need to be overcome during data generation. Due to minute amounts of starting material, samples undergo extensive amplification, increasing technical variability. A solution for mitigating amplification biases is to include unique molecular identifiers (UMIs), which tag individual molecules. Transcript abundances are then estimated from the number of unique UMIs aligning to a specific gene, with PCR duplicates resulting in copies of the UMI not included in expression estimates. Methods: Here we investigate the effect of gene length bias in scRNA-Seq across a variety of datasets that differ in terms of capture technology, library preparation, cell types and species. Results: We find that scRNA-seq datasets that have been sequenced using a full-length transcript protocol exhibit gene length bias akin to bulk RNA-seq data. Specifically, shorter genes tend to have lower counts and a higher rate of dropout. In contrast, protocols that include UMIs do not exhibit gene length bias, with a mostly uniform rate of dropout across genes of varying length. Across four different scRNA-Seq datasets profiling mouse embryonic stem cells (mESCs), we found the subset of genes that are only detected in the UMI datasets tended to be shorter, while the subset of genes detected only in the full-length datasets tended to be longer. Conclusions: We find that the choice of scRNA-seq protocol influences the detection rate of genes, and that full-length datasets exhibit gene-length bias. In addition, despite clear differences between UMI and full-length transcript data, we illustrate that full-length and UMI data can be combined to reveal the underlying biology influencing expression of mESCs.


2021 ◽  
Author(s):  
Lijun Ma ◽  
Mariana Murea ◽  
Young A Choi ◽  
Ashok K. Hemal ◽  
Alexei V. Mikhailov ◽  
...  

The kidney is composed of multiple cell types, each with specific physiological functions. Single-cell RNA sequencing (scRNA-Seq) is useful for classifying cell-specific gene expression profiles in kidney tissue. Because viable cells are critical in scRNA-Seq analyses, we report an optimized cell dissociation process and the necessity for histological screening of human kidney sections prior to performing scRNA-Seq. We show that glomerular injury can result in loss of select cell types during the cell clustering process. Subsequent fluorescence microscopy confirmed reductions in cell-specific markers among the injured cells seen on kidney sections and these changes need to be considered when interpreting results of scRNA-Seq.


2019 ◽  
Author(s):  
Kyle J. Travaglini ◽  
Ahmad N. Nabhan ◽  
Lolita Penland ◽  
Rahul Sinha ◽  
Astrid Gillich ◽  
...  

AbstractAlthough single cell RNA sequencing studies have begun providing compendia of cell expression profiles, it has proven more difficult to systematically identify and localize all molecular cell types in individual organs to create a full molecular cell atlas. Here we describe droplet- and plate-based single cell RNA sequencing applied to ∼75,000 human lung and blood cells, combined with a multi-pronged cell annotation approach, which have allowed us to define the gene expression profiles and anatomical locations of 58 cell populations in the human lung, including 41 of 45 previously known cell types or subtypes and 14 new ones. This comprehensive molecular atlas elucidates the biochemical functions of lung cell types and the cell-selective transcription factors and optimal markers for making and monitoring them; defines the cell targets of circulating hormones and predicts local signaling interactions including sources and targets of chemokines in immune cell trafficking and expression changes on lung homing; and identifies the cell types directly affected by lung disease genes and respiratory viruses. Comparison to mouse identified 17 molecular types that appear to have been gained or lost during lung evolution and others whose expression profiles have been substantially altered, revealing extensive plasticity of cell types and cell-type-specific gene expression during organ evolution including expression switches between cell types. This atlas provides the molecular foundation for investigating how lung cell identities, functions, and interactions are achieved in development and tissue engineering and altered in disease and evolution.


Author(s):  
Yinlei Hu ◽  
Bin Li ◽  
Falai Chen ◽  
Kun Qu

Abstract Unsupervised clustering is a fundamental step of single-cell RNA sequencing data analysis. This issue has inspired several clustering methods to classify cells in single-cell RNA sequencing data. However, accurate prediction of the cell clusters remains a substantial challenge. In this study, we propose a new algorithm for single-cell RNA sequencing data clustering based on Sparse Optimization and low-rank matrix factorization (scSO). We applied our scSO algorithm to analyze multiple benchmark datasets and showed that the cluster number predicted by scSO was close to the number of reference cell types and that most cells were correctly classified. Our scSO algorithm is available at https://github.com/QuKunLab/scSO. Overall, this study demonstrates a potent cell clustering approach that can help researchers distinguish cell types in single-cell RNA sequencing data.


Author(s):  
Qi Qiu ◽  
Peng Hu ◽  
Kiya W. Govek ◽  
Pablo G. Camara ◽  
Hao Wu

ABSTRACTSingle-cell RNA sequencing offers snapshots of whole transcriptomes but obscures the temporal dynamics of RNA biogenesis and decay. Here we present single-cell new transcript tagging sequencing (scNT-Seq), a method for massively parallel analysis of newly-transcribed and pre-existing RNAs from the same cell. This droplet microfluidics-based method enables high-throughput chemical conversion on barcoded beads, efficiently marking metabolically labeled newly-transcribed RNAs with T-to-C substitutions. By simultaneously measuring new and old transcriptomes, scNT-Seq reveals neuronal subtype-specific gene regulatory networks and time-resolved RNA trajectories in response to brief (minutes) versus sustained (hours) neuronal activation. Integrating scNT-Seq with genetic perturbation reveals that DNA methylcytosine dioxygenases may inhibit stepwise transition from pluripotent embryonic stem cell state to intermediate and totipotent two-cell-embryo-like (2C-like) states by promoting global RNA biogenesis. Furthermore, pulse-chase scNT-Seq enables transcriptome-wide measurements of RNA stability in rare 2C-like cells. Time-resolved single-cell transcriptomic analysis thus opens new lines of inquiry regarding cell-type-specific RNA regulatory mechanisms.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Periklis Paganos ◽  
Danila Voronov ◽  
Jacob M Musser ◽  
Detlev Arendt ◽  
Maria Ina Arnone

Identifying the molecular fingerprint of organismal cell types is key for understanding their function and evolution. Here, we use single cell RNA sequencing (scRNA-seq) to survey the cell types of the sea urchin early pluteus larva, representing an important developmental transition from non-feeding to feeding larva. We identify 21 distinct cell clusters, representing cells of the digestive, skeletal, immune, and nervous systems. Further subclustering of these reveal a highly detailed portrait of cell diversity across the larva, including the identification of neuronal cell types. We then validate important gene regulatory networks driving sea urchin development and reveal new domains of activity within the larval body. Focusing on neurons that co-express Pdx-1 and Brn1/2/4, we identify an unprecedented number of genes shared by this population of neurons in sea urchin and vertebrate endocrine pancreatic cells. Using differential expression results from Pdx-1 knockdown experiments, we show that Pdx1 is necessary for the acquisition of the neuronal identity of these cells. We hypothesize that a network similar to the one orchestrated by Pdx1 in the sea urchin neurons was active in an ancestral cell type and then inherited by neuronal and pancreatic developmental lineages in sea urchins and vertebrates.


2019 ◽  
Author(s):  
Gemma L. Johnson ◽  
Erick J. Masias ◽  
Jessica A. Lehoczky

ABSTRACTInnate regeneration following digit tip amputation is one of the few examples of epimorphic regeneration in mammals. Digit tip regeneration is mediated by the blastema, the same structure invoked during limb regeneration in some lower vertebrates. By genetic lineage analyses in mice, the digit tip blastema has been defined as a population of heterogeneous, lineage restricted progenitor cells. These previous studies, however, do not comprehensively evaluate blastema heterogeneity or address lineage restriction of closely related cell types. In this report we present single cell RNA sequencing of over 38,000 cells from mouse digit tip blastemas and unamputated control digit tips and generate an atlas of the cell types participating in digit tip regeneration. We define the differentiation trajectories of vascular, monocytic, and fibroblastic lineages over regeneration, and while our data confirm broad lineage restriction of progenitors, our analysis reveals an early blastema fibroblast population expressing a novel regeneration-specific gene, Mest.


Cephalalgia ◽  
2018 ◽  
Vol 38 (13) ◽  
pp. 1976-1983 ◽  
Author(s):  
William Renthal

Background Migraine is a debilitating disorder characterized by severe headaches and associated neurological symptoms. A key challenge to understanding migraine has been the cellular complexity of the human brain and the multiple cell types implicated in its pathophysiology. The present study leverages recent advances in single-cell transcriptomics to localize the specific human brain cell types in which putative migraine susceptibility genes are expressed. Methods The cell-type specific expression of both familial and common migraine-associated genes was determined bioinformatically using data from 2,039 individual human brain cells across two published single-cell RNA sequencing datasets. Enrichment of migraine-associated genes was determined for each brain cell type. Results Analysis of single-brain cell RNA sequencing data from five major subtypes of cells in the human cortex (neurons, oligodendrocytes, astrocytes, microglia, and endothelial cells) indicates that over 40% of known migraine-associated genes are enriched in the expression profiles of a specific brain cell type. Further analysis of neuronal migraine-associated genes demonstrated that approximately 70% were significantly enriched in inhibitory neurons and 30% in excitatory neurons. Conclusions This study takes the next step in understanding the human brain cell types in which putative migraine susceptibility genes are expressed. Both familial and common migraine may arise from dysfunction of discrete cell types within the neurovascular unit, and localization of the affected cell type(s) in an individual patient may provide insight into to their susceptibility to migraine.


Sign in / Sign up

Export Citation Format

Share Document