scholarly journals Statistical mechanics of phase space partitioning in large-scale spiking neuron circuits

2017 ◽  
Author(s):  
Maximilian Puelma Touzel ◽  
Fred Wolf

AbstractSynaptic interactions structure the phase space of the dynamics of neural circuits and constrain neural computation. Understanding how requires methods that handle those discrete interactions, yet few exist. Recently, it was discovered that even random networks exhibit dynamics that partitions the phase space into numerous attractor basins. Here we utilize this phenomenon to develop theory for the geometry of phase space partitioning in spiking neural circuits. We find basin boundaries structuring the phase space are pre-images of spike-time collision events. Formulating a statistical theory of spike-time collision events, we derive expressions for the rate of divergence of neighboring basins and for their size distribution. This theory reveals that the typical basin diameter grows with inhibitory coupling strength and shrinks with the rate of spike events. Our study provides an analytical and generalizable approach for dissecting how connectivity, coupling strength, single neuron dynamics and population activity shape the phase space geometry of spiking circuits.

2021 ◽  
Author(s):  
Brett W. Larsen ◽  
Shaul Druckmann

AbstractLateral and recurrent connections are ubiquitous in biological neural circuits. The strong computational abilities of feedforward networks have been extensively studied; on the other hand, while certain roles for lateral and recurrent connections in specific computations have been described, a more complete understanding of the role and advantages of recurrent computations that might explain their prevalence remains an important open challenge. Previous key studies by Minsky and later by Roelfsema argued that the sequential, parallel computations for which recurrent networks are well suited can be highly effective approaches to complex computational problems. Such “tag propagation” algorithms perform repeated, local propagation of information and were introduced in the context of detecting connectedness, a task that is challenging for feedforward networks. Here, we advance the understanding of the utility of lateral and recurrent computation by first performing a large-scale empirical study of neural architectures for the computation of connectedness to explore feedforward solutions more fully and establish robustly the importance of recurrent architectures. In addition, we highlight a tradeoff between computation time and performance and demonstrate hybrid feedforward/recurrent models that perform well even in the presence of varying computational time limitations. We then generalize tag propagation architectures to multiple, interacting propagating tags and demonstrate that these are efficient computational substrates for more general computations by introducing and solving an abstracted biologically inspired decision-making task. More generally, our work clarifies and expands the set of computational tasks that can be solved efficiently by recurrent computation, yielding hypotheses for structure in population activity that may be present in such tasks.Author SummaryLateral and recurrent connections are ubiquitous in biological neural circuits; intriguingly, this stands in contrast to the majority of current-day artificial neural network research which primarily uses feedforward architectures except in the context of temporal sequences. This raises the possibility that part of the difference in computational capabilities between real neural circuits and artificial neural networks is accounted for by the role of recurrent connections, and as a result a more detailed understanding of the computational role played by such connections is of great importance. Making effective comparisons between architectures is a subtle challenge, however, and in this paper we leverage the computational capabilities of large-scale machine learning to robustly explore how differences in architectures affect a network’s ability to learn a task. We first focus on the task of determining whether two pixels are connected in an image which has an elegant and efficient recurrent solution: propagate a connected label or tag along paths. Inspired by this solution, we show that it can be generalized in many ways, including propagating multiple tags at once and changing the computation performed on the result of the propagation. To illustrate these generalizations, we introduce an abstracted decision-making task related to foraging in which an animal must determine whether it can avoid predators in a random environment. Our results shed light on the set of computational tasks that can be solved efficiently by recurrent computation and how these solutions may appear in neural activity.


2015 ◽  
Vol 27 (6) ◽  
pp. 1186-1222 ◽  
Author(s):  
Bryan P. Tripp

Because different parts of the brain have rich interconnections, it is not possible to model small parts realistically in isolation. However, it is also impractical to simulate large neural systems in detail. This article outlines a new approach to multiscale modeling of neural systems that involves constructing efficient surrogate models of populations. Given a population of neuron models with correlated activity and with specific, nonrandom connections, a surrogate model is constructed in order to approximate the aggregate outputs of the population. The surrogate model requires less computation than the neural model, but it has a clear and specific relationship with the neural model. For example, approximate spike rasters for specific neurons can be derived from a simulation of the surrogate model. This article deals specifically with neural engineering framework (NEF) circuits of leaky-integrate-and-fire point neurons. Weighted sums of spikes are modeled by interpolating over latent variables in the population activity, and linear filters operate on gaussian random variables to approximate spike-related fluctuations. It is found that the surrogate models can often closely approximate network behavior with orders-of-magnitude reduction in computational demands, although there are certain systematic differences between the spiking and surrogate models. Since individual spikes are not modeled, some simulations can be performed with much longer steps sizes (e.g., 20 ms). Possible extensions to non-NEF networks and to more complex neuron models are discussed.


2021 ◽  
Author(s):  
Ye Li ◽  
William Bosking ◽  
Michael S Beauchamp ◽  
Sameer A Sheth ◽  
Daniel Yoshor ◽  
...  

Narrowband gamma oscillations (NBG: ~20-60Hz) in visual cortex reflect rhythmic fluctuations in population activity generated by underlying circuits tuned for stimulus location, orientation, and color. Consequently, the amplitude and frequency of induced NBG activity is highly sensitive to these stimulus features. For example, in the non-human primate, NBG displays biases in orientation and color tuning at the population level. Such biases may relate to recent reports describing the large-scale organization of single-cell orientation and color tuning in visual cortex, thus providing a potential bridge between measurements made at different scales. Similar biases in NBG population tuning have been predicted to exist in the human visual cortex, but this has yet to be fully examined. Using intracranial recordings from human visual cortex, we investigated the tuning of NBG to orientation and color, both independently and in conjunction. NBG was shown to display a cardinal orientation bias (horizontal) and also an end- and mid-spectral color bias (red/blue and green). When jointly probed, the cardinal bias for orientation was attenuated and an end-spectral preference for red and blue predominated. These data both elaborate on the close, yet complex, link between the population dynamics driving NBG oscillations and known feature selectivity biases in visual cortex, adding to a growing set of stimulus dependencies associated with the genesis of NBG. Together, these two factors may provide a fruitful testing ground for examining multi-scale models of brain activity, and impose new constraints on the functional significance of the visual gamma rhythm.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Angus Chadwick ◽  
Mark CW van Rossum ◽  
Matthew F Nolan

Hippocampal place cells encode an animal's past, current, and future location through sequences of action potentials generated within each cycle of the network theta rhythm. These sequential representations have been suggested to result from temporally coordinated synaptic interactions within and between cell assemblies. Instead, we find through simulations and analysis of experimental data that rate and phase coding in independent neurons is sufficient to explain the organization of CA1 population activity during theta states. We show that CA1 population activity can be described as an evolving traveling wave that exhibits phase coding, rate coding, spike sequences and that generates an emergent population theta rhythm. We identify measures of global remapping and intracellular theta dynamics as critical for distinguishing mechanisms for pacemaking and coordination of sequential population activity. Our analysis suggests that, unlike synaptically coupled assemblies, independent neurons flexibly generate sequential population activity within the duration of a single theta cycle.


Author(s):  
Daniel Deitch ◽  
Alon Rubin ◽  
Yaniv Ziv

AbstractNeuronal representations in the hippocampus and related structures gradually change over time despite no changes in the environment or behavior. The extent to which such ‘representational drift’ occurs in sensory cortical areas and whether the hierarchy of information flow across areas affects neural-code stability have remained elusive. Here, we address these questions by analyzing large-scale optical and electrophysiological recordings from six visual cortical areas in behaving mice that were repeatedly presented with the same natural movies. We found representational drift over timescales spanning minutes to days across multiple visual areas. The drift was driven mostly by changes in individual cells’ activity rates, while their tuning changed to a lesser extent. Despite these changes, the structure of relationships between the population activity patterns remained stable and stereotypic, allowing robust maintenance of information over time. Such population-level organization may underlie stable visual perception in the face of continuous changes in neuronal responses.


1995 ◽  
Vol 105 (3) ◽  
pp. 1539-1545 ◽  
Author(s):  
V. P. Pavlov ◽  
A. O. Starinetz

Sign in / Sign up

Export Citation Format

Share Document