scholarly journals Towards a More General Understanding of the Algorithmic Utility of Recurrent Connections

2021 ◽  
Author(s):  
Brett W. Larsen ◽  
Shaul Druckmann

AbstractLateral and recurrent connections are ubiquitous in biological neural circuits. The strong computational abilities of feedforward networks have been extensively studied; on the other hand, while certain roles for lateral and recurrent connections in specific computations have been described, a more complete understanding of the role and advantages of recurrent computations that might explain their prevalence remains an important open challenge. Previous key studies by Minsky and later by Roelfsema argued that the sequential, parallel computations for which recurrent networks are well suited can be highly effective approaches to complex computational problems. Such “tag propagation” algorithms perform repeated, local propagation of information and were introduced in the context of detecting connectedness, a task that is challenging for feedforward networks. Here, we advance the understanding of the utility of lateral and recurrent computation by first performing a large-scale empirical study of neural architectures for the computation of connectedness to explore feedforward solutions more fully and establish robustly the importance of recurrent architectures. In addition, we highlight a tradeoff between computation time and performance and demonstrate hybrid feedforward/recurrent models that perform well even in the presence of varying computational time limitations. We then generalize tag propagation architectures to multiple, interacting propagating tags and demonstrate that these are efficient computational substrates for more general computations by introducing and solving an abstracted biologically inspired decision-making task. More generally, our work clarifies and expands the set of computational tasks that can be solved efficiently by recurrent computation, yielding hypotheses for structure in population activity that may be present in such tasks.Author SummaryLateral and recurrent connections are ubiquitous in biological neural circuits; intriguingly, this stands in contrast to the majority of current-day artificial neural network research which primarily uses feedforward architectures except in the context of temporal sequences. This raises the possibility that part of the difference in computational capabilities between real neural circuits and artificial neural networks is accounted for by the role of recurrent connections, and as a result a more detailed understanding of the computational role played by such connections is of great importance. Making effective comparisons between architectures is a subtle challenge, however, and in this paper we leverage the computational capabilities of large-scale machine learning to robustly explore how differences in architectures affect a network’s ability to learn a task. We first focus on the task of determining whether two pixels are connected in an image which has an elegant and efficient recurrent solution: propagate a connected label or tag along paths. Inspired by this solution, we show that it can be generalized in many ways, including propagating multiple tags at once and changing the computation performed on the result of the propagation. To illustrate these generalizations, we introduce an abstracted decision-making task related to foraging in which an animal must determine whether it can avoid predators in a random environment. Our results shed light on the set of computational tasks that can be solved efficiently by recurrent computation and how these solutions may appear in neural activity.

Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3435
Author(s):  
Boram Kim ◽  
Kwang Seok Yoon ◽  
Hyung-Jun Kim

In this study, a CUDA Fortran-based GPU-accelerated Laplace equation model was developed and applied to several cases. The Laplace equation is one of the equations that can physically analyze the groundwater flows, and is an equation that can provide analytical solutions. Such a numerical model requires a large amount of data to physically regenerate the flow with high accuracy, and requires computational time. These numerical models require a large amount of data to physically reproduce the flow with high accuracy and require computational time. As a way to shorten the computation time by applying CUDA technology, large-scale parallel computations were performed on the GPU, and a program was written to reduce the number of data transfers between the CPU and GPU. A GPU consists of many ALUs specialized in graphic processing, and can perform more concurrent computations than a CPU using multiple ALUs. The computation results of the GPU-accelerated model were compared with the analytical solution of the Laplace equation to verify the accuracy. The computation results of the GPU-accelerated Laplace equation model were in good agreement with the analytical solution. As the number of grids increased, the computational time of the GPU-accelerated model gradually reduced compared to the computational time of the CPU-based Laplace equation model. As a result, the computational time of the GPU-accelerated Laplace equation model was reduced by up to about 50 times.


Author(s):  
Zhi-Feng Huang ◽  
Huai-Chun Zhou ◽  
Pei-feng Hsu

A new and improved method based on the discrete ordinates scheme with infinitely small weights (DOS+ISW) is developed for radiative heat transfer in three-dimensional participating media. To demonstrate the effectiveness of the method, ray effects caused by 1) abrupt step changes in the boundary conditions and 2) the stepwise variation of the medium emissive power are discussed. In this work, angular quadrature sets with large number of discrete ordinate directions are chosen to mitigate ray effects, while at the same time keeping the computational time increase to a minimum. Comparing with the conventional discrete ordinates method, the difference is that intensities in these directions are calculated by DOS+ISW. Intensity with fine directional resolution calculated by this method is validated by comparing with that of Reverse Monte Carlo method. The large number of discrete ordinates directions used in the new method becomes computationally prohibitive in discrete ordinates method due to the increased computer memory and computation time requirements.


2017 ◽  
Author(s):  
Maximilian Puelma Touzel ◽  
Fred Wolf

AbstractSynaptic interactions structure the phase space of the dynamics of neural circuits and constrain neural computation. Understanding how requires methods that handle those discrete interactions, yet few exist. Recently, it was discovered that even random networks exhibit dynamics that partitions the phase space into numerous attractor basins. Here we utilize this phenomenon to develop theory for the geometry of phase space partitioning in spiking neural circuits. We find basin boundaries structuring the phase space are pre-images of spike-time collision events. Formulating a statistical theory of spike-time collision events, we derive expressions for the rate of divergence of neighboring basins and for their size distribution. This theory reveals that the typical basin diameter grows with inhibitory coupling strength and shrinks with the rate of spike events. Our study provides an analytical and generalizable approach for dissecting how connectivity, coupling strength, single neuron dynamics and population activity shape the phase space geometry of spiking circuits.


2021 ◽  
Vol 12 (2) ◽  
pp. 52-68
Author(s):  
Panchalee Praneetpholkrang ◽  
Sarunya Kanjanawattana

This study proposes a methodology that integrates the epsilon constraint method (EC) and artificial neural network (ANN) to determine shelter location-allocation. Since shelter location-allocation is a critical part of disaster response stage, fast decision-making is very important. A multi-objective optimization model is formulated to simultaneously minimize total cost and minimize total evacuation time. The proposed model is solved by EC because it generates the optimal solutions without intervention of decision-makers during the solution process. However, EC requires intensive computational time, especially when dealing with large-scale data. Thus, ANN is combined with EC to facilitate prompt decision-making and address the complexity. Herein, ANN is supervised by the optimal solutions generated by EC. The applicability of the proposed methodology is demonstrated through a case study of shelter allocation in response to flooding in Surat Thani, Thailand. It is plausible to use this proposed methodology to improve disaster response for the benefit of victims and decision-makers.


Author(s):  
Masanobu Hasebe ◽  
Shigeru Tabeta

Most of ocean models employ hydrostatic approximation because the horizontal scale is usually much larger than the vertical scale in oceanic phenomena. In hydrostatic approximation, dynamic pressure is neglected and the momentum equation in vertical direction needs not to be solved. But for the phenomena of buoyant jet from the sea bottom such as submarine groundwater discharge, hydrothermal plume and so on, hydrodynamic pressure cannot be neglected and the momentum equation of vertical direction must to be taken into account. Non-hydrostatic analysis requires so much computation time that it is usually difficult to calculate the current field in the wide ocean area by this approach. On the other hand, analysis assuming the hydrostatic approximation needs less computational time and usually gives reasonable results for large scale ocean phenomena such as tidal current. In the present study, the authors developed a new type of ocean model for multi-scale analysis, which conducts hydrostatic analysis for phenomena in wide area and non-hydrostatic analysis for the detail flow around the buoyant jet simultaneously. The application limit of hydrostatic approximation for ocean model was investigated, and a dynamic connection method of hydrostatic zone with non-hydrostatic zone was developed. By theoretical consideration employing parameter δ and ε which represent the ratio of grid size Δz to Δx and the ratio of vertical velocity to horizontal velocity, it was found that hydrostatic approximation can be applied if δε and ε2 are minute. To examine the developed method, simulations for lock-exchange problem and vertical jet under oscillating current were conducted. The result by the present model was similar to that of non-hydrostatic model in the case that hydrostatic approximation was applied on the area of δε<0.005 and ε2<0.005.


2019 ◽  
Vol 16 (161) ◽  
pp. 20190410
Author(s):  
Mi Kieu Trinh ◽  
Matthew T. Wayland ◽  
Sudhakaran Prabakaran

There is still a significant gap between our understanding of neural circuits and the behaviours they compute—i.e. the computations performed by these neural networks (Carandini 2012 Nat. Neurosci. 15 , 507–509. ( doi:10.1038/nn.3043 )). Cellular decision-making processes, learning, behaviour and memory formation—all that have been only associated with animals with neural systems—have also been observed in many unicellular aneural organisms, namely Physarum , Paramecium and Stentor (Tang & Marshall2018 Curr. Biol. 28 , R1180–R1184. ( doi:10.1016/j.cub.2018.09.015 )). As these are fully functioning organisms, yet being unicellular, there is a much better chance to elucidate the detailed mechanisms underlying these learning processes in these organisms without the complications of highly interconnected neural circuits. An intriguing learning behaviour observed in Stentor roeseli (Jennings 1902 Am. J. Physiol. Legacy Content 8 , 23–60. ( doi:10.1152/ajplegacy.1902.8.1.23 )) when stimulated with carmine has left scientists puzzled for more than a century. So far, none of the existing learning paradigm can fully encapsulate this particular series of five characteristic avoidance reactions. Although we were able to observe all responses described in the literature and in a previous study (Dexter et al . 2019), they do not conform to any particular learning model. We then investigated whether models inferred from machine learning approaches, including decision tree, random forest and feed-forward artificial neural networks could infer and predict the behaviour of S. roeseli . Our results showed that an artificial neural network with multiple ‘computational’ neurons is inefficient at modelling the single-celled ciliate's avoidance reactions. This has highlighted the complexity of behaviours in aneural organisms. Additionally, this report will also discuss the significance of elucidating molecular details underlying learning and decision-making processes in these unicellular organisms, which could offer valuable insights that are applicable to higher animals.


2021 ◽  
Vol 104 (1) ◽  
pp. 003685042199260
Author(s):  
Wei Wei ◽  
Chaolong Yuan ◽  
Rendong Wu ◽  
Wei Jiao

Accurate prediction of breakthrough extruding force is very important for extrusion production, especially for the large-scale extrusion process, which directly affects the production costs and safety. In this paper, based on the production data of the 360-million-newton-tonnage extruding machine, an artificial neural network (ANN) algorithm is used to establish the breakthrough extruding force prediction model for the large-scale extrusion process, and the calculation results are validated. Results show that the proposed model has high accuracy, and the average relative error between the predicted and experimental values is only 1.79%. Further, problems that are difficult to quantitative analyze such as die wear and glass powder residue in actual production, which can be regarded as “noises,” are studied. Finally, the model presented is compared with the traditional finite element (FE) model. The accuracy of the ANN model is 10.2 times that of the FE model. Thus, the model established in the study fully considers the difference between actual production and theoretical analysis and provides an effective method for accurately predicting the breakthrough extruding force.


2021 ◽  
Author(s):  
Vittorio Verda ◽  
Romano Borchiellini ◽  
Sara Cosentino ◽  
Elisa Guelpa ◽  
Jesus Mejias Tuni

AbstractComputational Fluid Dynamics (CFD) is widely used to simulate tunnels and partially substitute on-site tests. As technology advances, new application opportunities appear; some examples are the optimal operation of ventilation and emergency systems, risk assessment of tunnels and training of the operators. Even when the computational capacity of computers has grown, CFD is still constrained by the large amount of computational resources needed in long tunnels. This introduces a need for methods able to reduce the amount of time required for simulations. To face this need, a novel 1D–3D multiscale model is presented in this paper. The model incorporates the code Whitesmoke into FDS (Fire Dynamics Simulator) through a direct coupling. Whitesmoke manages the fluid dynamics, temperature and concentration of species in the 1D portion, while FDS calculates these fields in the portion where fire occurs. Using this multiscale model, the computation time for long tunnels is reduced, proportionally to the 1D length in the domain. Also, additional simulation capabilities particularly useful for tunnel analysis are obtained. Some new characteristics are pressure boundary conditions can be easily imposed at the tunnel portals or at the ventilation shafts; the characteristic curves of the fans/jet-fans can be included, also considering the degradation effects due to smoke propagation; the piston effect can be properly considered. Our research verifies most of its capabilities, also clarifying its limitations and the criteria used to set the domain for the analysis. As a final step, the model is tested in a tunnel with a cross section of 4.8 m and 600 m of length with a 2 MW fire, comparing its performance with a full 3D FDS simulation. The difference in temperature and velocity is minimal for most of the domain, making It a good way to optimize resource usage in large simulations. Furthermore, the multiscale manages to reduce the computational time of more than a 50%.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Zhi-Feng Huang ◽  
Huai-Chun Zhou ◽  
Pei-feng Hsu

A new and improved method based on the concept of discrete ordinates scheme with infinitely small weights (DOS+ISW) is developed for modeling radiative heat transfer in three-dimensional participating media. To demonstrate the effectiveness of the method in mitigating ray effects, the ray effects caused by (1) abrupt step changes in the boundary conditions and (2) the stepwise variation of the medium emissive power are considered. In this work, angular quadrature sets with large number of discrete ordinate directions are chosen to mitigate ray effects while at the same time keeping the computational time increase to a minimum. Comparing with the conventional discrete ordinates method, the difference is that intensities in these directions are calculated by DOS+ISW method. Intensity with fine directional resolution calculated by this method is validated by comparing with that of reverse Monte Carlo method. The large number of discrete ordinate directions used in the new method becomes computationally prohibitive in the conventional discrete ordinates method due to the increased computer memory and computation time requirements.


VASA ◽  
2020 ◽  
pp. 1-6
Author(s):  
Hanji Zhang ◽  
Dexin Yin ◽  
Yue Zhao ◽  
Yezhou Li ◽  
Dejiang Yao ◽  
...  

Summary: Our meta-analysis focused on the relationship between homocysteine (Hcy) level and the incidence of aneurysms and looked at the relationship between smoking, hypertension and aneurysms. A systematic literature search of Pubmed, Web of Science, and Embase databases (up to March 31, 2020) resulted in the identification of 19 studies, including 2,629 aneurysm patients and 6,497 healthy participants. Combined analysis of the included studies showed that number of smoking, hypertension and hyperhomocysteinemia (HHcy) in aneurysm patients was higher than that in the control groups, and the total plasma Hcy level in aneurysm patients was also higher. These findings suggest that smoking, hypertension and HHcy may be risk factors for the development and progression of aneurysms. Although the heterogeneity of meta-analysis was significant, it was found that the heterogeneity might come from the difference between race and disease species through subgroup analysis. Large-scale randomized controlled studies of single species and single disease species are needed in the future to supplement the accuracy of the results.


Sign in / Sign up

Export Citation Format

Share Document