scholarly journals Fronto-parietal Organization for Response Times in Inhibition of Return: The FORTIOR Model

2017 ◽  
Author(s):  
Tal Seidel Malkinson ◽  
Paolo Bartolomeo

Inhibition of Return (IOR) refers to a slowing of response times (RTs) for visual stimuli repeated at the same spatial location, as compared to stimuli occurring at novel locations. The functional mechanisms and the neural bases of this phenomenon remain debated. Here we present FORTIOR, a model of the cortical control of visual IOR in the human brain. The model is based on known facts about the anatomical and functional organization of fronto-parietal attention networks, and accounts for a broad range of behavioral findings in healthy participants and brain-damaged patients. FORTIOR does that by combining four principles of asymmetry: a) Asymmetry in the networks topography, whereby the temporoparietal junction (TPJ) and ventrolateral prefrontal cortex (vlPFC) nodes are lateralized to the right hemisphere, causing higher activation levels in the right intraparietal sulcus (IPS) and frontal eye field (FEF) nodes. b) Asymmetry in inter-hemispheric connectivity, in which inter-hemispheric connections from left hemisphere IPS to right hemisphere IPS and from left hemisphere FEF to right hemisphere FEF are weaker than in the opposite direction. c) Asymmetry of visual inputs, stipulating that the FEF receives direct visual input coming from the ipsilateral visual cortex, while the right TPJ and vlPFC and IPS nodes receive input from both the contralateral and the ipsilateral visual fields. d) Asymmetry in the response modality, with a higher response threshold for the manual response system than that required to trigger a saccadic response. This asymmetry results in saccadic IOR being more robust to interference than manual IOR. FORTIOR accounts for spatial asymmetries in the occurrence of IOR after brain damage and after non-invasive transcranial magnetic stimulation on parietal and frontal regions. It also provides a framework to understand dissociations between manual and saccadic IOR, and makes testable predictions for future experiments to assess its validity.

2002 ◽  
Vol 14 (7) ◽  
pp. 994-1017 ◽  
Author(s):  
Alice Mado Proverbio ◽  
Barbara Čok ◽  
Alberto Zani

The aim of the present study was to investigate how multiple languages are represented in the human brain. Event-related brain potentials (ERPs) were recorded from right-handed polyglots and monolinguals during a task involving silent reading. The participants in the experiment were nine Italian monolinguals and nine Italian/Slovenian bilinguals of a Slovenian minority in Trieste; the bilinguals, highly fluent in both languages, had spoken both languages since birth. The stimuli were terminal words that would correctly complete a short, meaningful, previously shown sentence, or else were semantically or syntactically incorrect. The task consisted in deciding whether the sentences were well formed or not, giving the response by pressing a button. Both groups read the same set of 200 Italian sentences to compare the linguistic processing, while the bilinguals also received a set of 200 Slovenian sentences, comparable in complexity and length, to compare the processing of the two languages within the group. For the bilinguals, the ERP results revealed a strong, left-sided activation, reflected by the N1 component, of the occipito-temporal regions dedicated to orthographic processing, with a latency of about 150 msec for Slovenian words, but bilateral activation of the same areas for Italian words, which was also displayed by topographical mapping. In monolinguals, semantic error produced a long-lasting negative response (N2 and N4) that was greater over the right hemisphere, whereas syntactic error activated mostly the left hemisphere. Conversely, in the bilinguals, semantic incongruence resulted in greater response over the left hemisphere than over the right. In this group, the P615 syntactical error responses were of equal amplitude on both hemispheres for Italian words and greater on the right side for Slovenian words. The present findings support the view that there are inter- and intrahemispheric brain activation asymmetries when monolingual and bilingual speakers comprehend written language. The fact that the bilingual speakers in the present study were highly fluent and had acquired both languages in early infancy suggests that the brain activation patterns do not depend on the age of acquisition or the fluency level, as in the case of late, not-so-proficient L2 language learners, but on the functional organization of the bilinguals' brain due to polyglotism and based on brain plasticity.


Perception ◽  
2021 ◽  
Vol 50 (1) ◽  
pp. 27-38
Author(s):  
Ella K. Moeck ◽  
Nicole A. Thomas ◽  
Melanie K. T. Takarangi

Attention is unequally distributed across the visual field. Due to greater right than left hemisphere activation for visuospatial attention, people attend slightly more to the left than the right side. As a result, people voluntarily remember visual stimuli better when it first appears in the left than the right visual field. But does this effect—termed a right hemisphere memory bias—also enhance involuntary memory? We manipulated the presentation location of 100 highly negative images (chosen to increase the likelihood that participants would experience any involuntary memories) in three conditions: predominantly leftward (right hemisphere bias), predominantly rightward (left hemisphere bias), or equally in both visual fields (bilateral). We measured subsequent involuntary memories immediately and for 3 days after encoding. Contrary to predictions, biased hemispheric processing did not affect short- or long-term involuntary memory frequency or duration. Future research should measure hemispheric differences at retrieval, rather than just encoding.


1991 ◽  
Vol 3 (4) ◽  
pp. 313-321 ◽  
Author(s):  
Atsuko Nakagawa

The role of the left and right hemisphere was examined during semantic priming by antonyms, remote associates, and unrelated words. Targets presented directly to the left hemisphere showed an early facilitation and a late developing inhibition, while targets presented directly to the right hemisphere showed a late developing facilitation of strong and weak associations and little evidence of inhibition. When a visual cue was given prior to each target word, reaction times were facilitated equally in both visual fields and for all prime target relationships. When the priming task was combined with shadowing, reaction times generally increased and all evidence of inhibition in left hemisphere processing disappeared. This supported the idea that the inhibition found in the left hemisphere was due to its interaction with the anterior attention network.


2019 ◽  
Author(s):  
Basil Christoph Preisig ◽  
Matthias J. Sjerps

The present study investigated whether speech-related spectral information benefits from initially predominant right or left hemisphere processing. Normal hearing individuals categorized speech sounds composed of an ambiguous base (perceptually intermediate between /ga/ and /da/), presented to one ear, and a disambiguating low or high F3 chirp presented to the other ear. Shorter response times were found when the chirp was presented to the left than to the right ear (inducing initially right-hemisphere chirp processing), but no between-ear differences in strength of overall integration. The results are in line with the assumptions of a right hemispheric dominance for spectral processing.


2020 ◽  
Vol 133 (1) ◽  
pp. 54-62 ◽  
Author(s):  
Michal M. Andelman-Gur ◽  
Tomer Gazit ◽  
Fani Andelman ◽  
Svetlana Kipervasser ◽  
Uri Kramer ◽  
...  

OBJECTIVEExperiential phenomena (EP), such as illusions and complex hallucinations, are vivid experiences created in one’s mind. They can occur spontaneously as epileptic auras or can be elicited by electrical brain stimulation (EBS) in patients undergoing presurgical evaluation for drug-resistant epilepsy. Previous work suggests that EP arise from activation of different nodes within interconnected neural networks mainly in the temporal lobes. Yet, the anatomical extent of these neural networks has not been described and the question of lateralization of EP has not been fully addressed. To this end, an extended number of brain regions in which electrical stimulation elicited EP were studied to test whether there is a lateralization propensity to EP phenomena.METHODSA total of 19 drug-resistant focal epilepsy patients who underwent EBS as part of invasive presurgical evaluation and who experienced EP during the stimulation were included. Spatial dispersion of visual and auditory illusions and complex hallucinations in each hemisphere was determined by calculation of Euclidean distances between electrodes and their centroid in common space, based on (x, y, z) Cartesian coordinates of electrode locations.RESULTSIn total, 5857 stimulation epochs were analyzed; 917 stimulations elicited responses, out of which 130 elicited EP. Complex visual hallucinations were found to be widely dispersed in the right hemisphere, while they were tightly clustered in the occipital lobe of the left hemisphere. Visual illusions were elicited mostly in the occipital lobes bilaterally. Auditory illusions and hallucinations were evoked symmetrically in the temporal lobes.CONCLUSIONSThese findings suggest that complex visual hallucinations arise from wider spread in the right compared to the left hemisphere, possibly mirroring the asymmetry in the white matter organization of the two hemispheres. These results offer some insights into lateralized differences in functional organization and connectivity that may be important for functional mapping and planning of surgical resections in patients with epilepsy.


1993 ◽  
Vol 8 (6) ◽  
pp. 301-307 ◽  
Author(s):  
E Aharonovich ◽  
N Karny ◽  
I Nachson

SummaryThe hypothesis that paranoid and non-paranoid schizophrenics are differentially associated with unilateral hemisphere dysfunction was tested on 12 paranoid and 12 non-paranoid schizophrenics, as well as on 24 affective patients and 24 normal controls. The subjects were presented for 150 ms with series of digit-pairs and open rings to the left or right visual fields. Overall recognition of digits and localization of gaps in the rings were better for the right than for the left visual field. However, performance of the paranoid and non-paranoid schizophrenics was relatively poorer in response to the right and left visual field stimuli, respectively. Since these data do not correspond to the findings obtained in the auditory modality, they were interpreted as indicating modality-specific associations of paranoid schizophrenia with left hemisphere dysfunction, and of non-paranoid schizophrenia with right hemisphere dysfunction.


2013 ◽  
Vol 27 (3) ◽  
pp. 142-148 ◽  
Author(s):  
Konstantinos Trochidis ◽  
Emmanuel Bigand

The combined interactions of mode and tempo on emotional responses to music were investigated using both self-reports and electroencephalogram (EEG) activity. A musical excerpt was performed in three different modes and tempi. Participants rated the emotional content of the resulting nine stimuli and their EEG activity was recorded. Musical modes influence the valence of emotion with major mode being evaluated happier and more serene, than minor and locrian modes. In EEG frontal activity, major mode was associated with an increased alpha activation in the left hemisphere compared to minor and locrian modes, which, in turn, induced increased activation in the right hemisphere. The tempo modulates the arousal value of emotion with faster tempi associated with stronger feeling of happiness and anger and this effect is associated in EEG with an increase of frontal activation in the left hemisphere. By contrast, slow tempo induced decreased frontal activation in the left hemisphere. Some interactive effects were found between mode and tempo: An increase of tempo modulated the emotion differently depending on the mode of the piece.


Author(s):  
Elizabeth Schechter

This chapter defends the 2-agents claim, according to which the two hemispheres of a split-brain subject are associated with distinct intentional agents. The empirical basis of this claim is that, while both hemispheres are the source or site of intentions, the capacity to integrate them in practical reasoning no longer operates interhemispherically after split-brain surgery. As a result, the right hemisphere-associated agent, R, and the left hemisphere-associated agent, L, enjoy intentional autonomy from each other. Although the positive case for the 2-agents claim is grounded mainly in experimental findings, the claim is not contradicted by what we know of split-brain subjects’ ordinary behavior, that is, the way they act outside of experimental conditions.


1998 ◽  
Vol 353 (1377) ◽  
pp. 1819-1828 ◽  
Author(s):  
◽  
S. M. Courtney ◽  
L. Petit ◽  
J. V. Haxby ◽  
L. G. Ungerleider

Working memory enables us to hold in our ‘mind's eye’ the contents of our conscious awareness, even in the absence of sensory input, by maintaining an active representation of information for a brief period of time. In this review we consider the functional organization of the prefrontal cortex and its role in this cognitive process. First, we present evidence from brain–imaging studies that prefrontal cortex shows sustained activity during the delay period of visual working memory tasks, indicating that this cortex maintains on–line representations of stimuli after they are removed from view. We then present evidence for domain specificity within frontal cortex based on the type of information, with object working memory mediated by more ventral frontal regions and spatial working memory mediated by more dorsal frontal regions. We also propose that a second dimension for domain specificity within prefrontal cortex might exist for object working memory on the basis of the type of representation, with analytic representations maintained preferentially in the left hemisphere and image–based representations maintained preferentially in the right hemisphere. Furthermore, we discuss the possibility that there are prefrontal areas brought into play during the monitoring and manipulation of information in working memory in addition to those engaged during the maintenance of this information. Finally, we consider the relationship of prefrontal areas important for working memory, both to posterior visual processing areas and to prefrontal areas associated with long–term memory.


Sign in / Sign up

Export Citation Format

Share Document