Spatial distribution and hemispheric asymmetry of electrically evoked experiential phenomena in the human brain

2020 ◽  
Vol 133 (1) ◽  
pp. 54-62 ◽  
Author(s):  
Michal M. Andelman-Gur ◽  
Tomer Gazit ◽  
Fani Andelman ◽  
Svetlana Kipervasser ◽  
Uri Kramer ◽  
...  

OBJECTIVEExperiential phenomena (EP), such as illusions and complex hallucinations, are vivid experiences created in one’s mind. They can occur spontaneously as epileptic auras or can be elicited by electrical brain stimulation (EBS) in patients undergoing presurgical evaluation for drug-resistant epilepsy. Previous work suggests that EP arise from activation of different nodes within interconnected neural networks mainly in the temporal lobes. Yet, the anatomical extent of these neural networks has not been described and the question of lateralization of EP has not been fully addressed. To this end, an extended number of brain regions in which electrical stimulation elicited EP were studied to test whether there is a lateralization propensity to EP phenomena.METHODSA total of 19 drug-resistant focal epilepsy patients who underwent EBS as part of invasive presurgical evaluation and who experienced EP during the stimulation were included. Spatial dispersion of visual and auditory illusions and complex hallucinations in each hemisphere was determined by calculation of Euclidean distances between electrodes and their centroid in common space, based on (x, y, z) Cartesian coordinates of electrode locations.RESULTSIn total, 5857 stimulation epochs were analyzed; 917 stimulations elicited responses, out of which 130 elicited EP. Complex visual hallucinations were found to be widely dispersed in the right hemisphere, while they were tightly clustered in the occipital lobe of the left hemisphere. Visual illusions were elicited mostly in the occipital lobes bilaterally. Auditory illusions and hallucinations were evoked symmetrically in the temporal lobes.CONCLUSIONSThese findings suggest that complex visual hallucinations arise from wider spread in the right compared to the left hemisphere, possibly mirroring the asymmetry in the white matter organization of the two hemispheres. These results offer some insights into lateralized differences in functional organization and connectivity that may be important for functional mapping and planning of surgical resections in patients with epilepsy.

2002 ◽  
Vol 14 (7) ◽  
pp. 994-1017 ◽  
Author(s):  
Alice Mado Proverbio ◽  
Barbara Čok ◽  
Alberto Zani

The aim of the present study was to investigate how multiple languages are represented in the human brain. Event-related brain potentials (ERPs) were recorded from right-handed polyglots and monolinguals during a task involving silent reading. The participants in the experiment were nine Italian monolinguals and nine Italian/Slovenian bilinguals of a Slovenian minority in Trieste; the bilinguals, highly fluent in both languages, had spoken both languages since birth. The stimuli were terminal words that would correctly complete a short, meaningful, previously shown sentence, or else were semantically or syntactically incorrect. The task consisted in deciding whether the sentences were well formed or not, giving the response by pressing a button. Both groups read the same set of 200 Italian sentences to compare the linguistic processing, while the bilinguals also received a set of 200 Slovenian sentences, comparable in complexity and length, to compare the processing of the two languages within the group. For the bilinguals, the ERP results revealed a strong, left-sided activation, reflected by the N1 component, of the occipito-temporal regions dedicated to orthographic processing, with a latency of about 150 msec for Slovenian words, but bilateral activation of the same areas for Italian words, which was also displayed by topographical mapping. In monolinguals, semantic error produced a long-lasting negative response (N2 and N4) that was greater over the right hemisphere, whereas syntactic error activated mostly the left hemisphere. Conversely, in the bilinguals, semantic incongruence resulted in greater response over the left hemisphere than over the right. In this group, the P615 syntactical error responses were of equal amplitude on both hemispheres for Italian words and greater on the right side for Slovenian words. The present findings support the view that there are inter- and intrahemispheric brain activation asymmetries when monolingual and bilingual speakers comprehend written language. The fact that the bilingual speakers in the present study were highly fluent and had acquired both languages in early infancy suggests that the brain activation patterns do not depend on the age of acquisition or the fluency level, as in the case of late, not-so-proficient L2 language learners, but on the functional organization of the bilinguals' brain due to polyglotism and based on brain plasticity.


2021 ◽  
Vol 4 ◽  
Author(s):  
Sergio Ledesma ◽  
Mario-Alberto Ibarra-Manzano ◽  
Dora-Luz Almanza-Ojeda ◽  
Pascal Fallavollita ◽  
Jason Steffener

In this study, Artificial Intelligence was used to analyze a dataset containing the cortical thickness from 1,100 healthy individuals. This dataset had the cortical thickness from 31 regions in the left hemisphere of the brain as well as from 31 regions in the right hemisphere. Then, 62 artificial neural networks were trained and validated to estimate the number of neurons in the hidden layer. These neural networks were used to create a model for the cortical thickness through age for each region in the brain. Using the artificial neural networks and kernels with seven points, numerical differentiation was used to compute the derivative of the cortical thickness with respect to age. The derivative was computed to estimate the cortical thickness speed. Finally, color bands were created for each region in the brain to identify a positive derivative, that is, a part of life with an increase in cortical thickness. Likewise, the color bands were used to identify a negative derivative, that is, a lifetime period with a cortical thickness reduction. Regions of the brain with similar derivatives were organized and displayed in clusters. Computer simulations showed that some regions exhibit abrupt changes in cortical thickness at specific periods of life. The simulations also illustrated that some regions in the left hemisphere do not follow the pattern of the same region in the right hemisphere. Finally, it was concluded that each region in the brain must be dynamically modeled. One advantage of using artificial neural networks is that they can learn and model non-linear and complex relationships. Also, artificial neural networks are immune to noise in the samples and can handle unseen data. That is, the models based on artificial neural networks can predict the behavior of samples that were not used for training. Furthermore, several studies have shown that artificial neural networks are capable of deriving information from imprecise data. Because of these advantages, the results obtained in this study by the artificial neural networks provide valuable information to analyze and model the cortical thickness.


2017 ◽  
Author(s):  
Tal Seidel Malkinson ◽  
Paolo Bartolomeo

Inhibition of Return (IOR) refers to a slowing of response times (RTs) for visual stimuli repeated at the same spatial location, as compared to stimuli occurring at novel locations. The functional mechanisms and the neural bases of this phenomenon remain debated. Here we present FORTIOR, a model of the cortical control of visual IOR in the human brain. The model is based on known facts about the anatomical and functional organization of fronto-parietal attention networks, and accounts for a broad range of behavioral findings in healthy participants and brain-damaged patients. FORTIOR does that by combining four principles of asymmetry: a) Asymmetry in the networks topography, whereby the temporoparietal junction (TPJ) and ventrolateral prefrontal cortex (vlPFC) nodes are lateralized to the right hemisphere, causing higher activation levels in the right intraparietal sulcus (IPS) and frontal eye field (FEF) nodes. b) Asymmetry in inter-hemispheric connectivity, in which inter-hemispheric connections from left hemisphere IPS to right hemisphere IPS and from left hemisphere FEF to right hemisphere FEF are weaker than in the opposite direction. c) Asymmetry of visual inputs, stipulating that the FEF receives direct visual input coming from the ipsilateral visual cortex, while the right TPJ and vlPFC and IPS nodes receive input from both the contralateral and the ipsilateral visual fields. d) Asymmetry in the response modality, with a higher response threshold for the manual response system than that required to trigger a saccadic response. This asymmetry results in saccadic IOR being more robust to interference than manual IOR. FORTIOR accounts for spatial asymmetries in the occurrence of IOR after brain damage and after non-invasive transcranial magnetic stimulation on parietal and frontal regions. It also provides a framework to understand dissociations between manual and saccadic IOR, and makes testable predictions for future experiments to assess its validity.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Guido Gainotti

The present survey develops a previous position paper, in which I suggested that the multimodal semantic impairment observed in advanced stages of semantic dementia is due to the joint disruption of pictorial and verbal representations, subtended by the right and left anterior temporal lobes, rather than to the loss of a unitary, amodal semantic system. The main goals of the present review are (a) to survey a larger set of data, in order to confirm the differences in conceptual representations at the level of the right and left hemispheres, (b) to examine if language-mediated information plays a greater role in left hemisphere semantic knowledge than sensory-motor information in right hemisphere conceptual knowledge, and (c) to discuss the models that could explain both the differences in conceptual representations at the hemispheric level and the prevalence of the left hemisphere language-mediated semantic knowledge over the right hemisphere perceptually based conceptual representations.


2013 ◽  
Vol 27 (3) ◽  
pp. 142-148 ◽  
Author(s):  
Konstantinos Trochidis ◽  
Emmanuel Bigand

The combined interactions of mode and tempo on emotional responses to music were investigated using both self-reports and electroencephalogram (EEG) activity. A musical excerpt was performed in three different modes and tempi. Participants rated the emotional content of the resulting nine stimuli and their EEG activity was recorded. Musical modes influence the valence of emotion with major mode being evaluated happier and more serene, than minor and locrian modes. In EEG frontal activity, major mode was associated with an increased alpha activation in the left hemisphere compared to minor and locrian modes, which, in turn, induced increased activation in the right hemisphere. The tempo modulates the arousal value of emotion with faster tempi associated with stronger feeling of happiness and anger and this effect is associated in EEG with an increase of frontal activation in the left hemisphere. By contrast, slow tempo induced decreased frontal activation in the left hemisphere. Some interactive effects were found between mode and tempo: An increase of tempo modulated the emotion differently depending on the mode of the piece.


Author(s):  
Elizabeth Schechter

This chapter defends the 2-agents claim, according to which the two hemispheres of a split-brain subject are associated with distinct intentional agents. The empirical basis of this claim is that, while both hemispheres are the source or site of intentions, the capacity to integrate them in practical reasoning no longer operates interhemispherically after split-brain surgery. As a result, the right hemisphere-associated agent, R, and the left hemisphere-associated agent, L, enjoy intentional autonomy from each other. Although the positive case for the 2-agents claim is grounded mainly in experimental findings, the claim is not contradicted by what we know of split-brain subjects’ ordinary behavior, that is, the way they act outside of experimental conditions.


1998 ◽  
Vol 353 (1377) ◽  
pp. 1819-1828 ◽  
Author(s):  
◽  
S. M. Courtney ◽  
L. Petit ◽  
J. V. Haxby ◽  
L. G. Ungerleider

Working memory enables us to hold in our ‘mind's eye’ the contents of our conscious awareness, even in the absence of sensory input, by maintaining an active representation of information for a brief period of time. In this review we consider the functional organization of the prefrontal cortex and its role in this cognitive process. First, we present evidence from brain–imaging studies that prefrontal cortex shows sustained activity during the delay period of visual working memory tasks, indicating that this cortex maintains on–line representations of stimuli after they are removed from view. We then present evidence for domain specificity within frontal cortex based on the type of information, with object working memory mediated by more ventral frontal regions and spatial working memory mediated by more dorsal frontal regions. We also propose that a second dimension for domain specificity within prefrontal cortex might exist for object working memory on the basis of the type of representation, with analytic representations maintained preferentially in the left hemisphere and image–based representations maintained preferentially in the right hemisphere. Furthermore, we discuss the possibility that there are prefrontal areas brought into play during the monitoring and manipulation of information in working memory in addition to those engaged during the maintenance of this information. Finally, we consider the relationship of prefrontal areas important for working memory, both to posterior visual processing areas and to prefrontal areas associated with long–term memory.


2021 ◽  
Vol 23 (Supplement_2) ◽  
pp. ii44-ii44
Author(s):  
A T J van der Boog ◽  
S David ◽  
A M M Steennis ◽  
T J Snijders ◽  
J W Dankbaar ◽  
...  

Abstract BACKGROUND Surgical treatment of diffuse glioma is performed to reduce tumor mass effect and to pave the way for adjuvant (chemo)radiotherapy. As a complication of surgery, ischemic lesions are often found in the postoperative setting. Not only can these lesion induce neurological deficits, but their volume has also been associated with reduced survival time. Prior studies suggest areas with a singular vascular supply to be more prone to postoperative ischemic lesions, although the precise cause is yet unknown. The aim of this study was to explore the volumetric and spatial distributions of postoperative ischemic lesions and their relation to arterial territories in glioma patients. MATERIAL AND METHODS We accessed a retrospective database of 144 adult cases with WHO grade II-IV supratentorial gliomas, who received surgery and postoperative MRI within 3 days in 2012–2014. We identified 93 patients with postoperative ischemia, defined as new confluent diffusion restriction on DWI. Ischemic lesions were manually delineated and spatially normalized to stereotaxic MNI space. Voxel-based analysis (VBA) was performed to compare presence and absence of postoperative ischemia. False positive results were eliminated by family-wise error correction. Areas of ischemia were labeled using an arterial territory map, the Harvard-Oxford cortical and subcortical atlases and the XTRACT white matter atlas. RESULTS Median volume of confluent ischemia was 3.52cc (IQR 2.15–5.94). 23 cases had only ischemic lesion in the left hemisphere, 46 in the right hemisphere and 24 bilateral. Median volume was 3.08cc (IQR 1.35–5.72) in left-sided lesions and 2.47cc (1.01–4.24) in right-sided lesions. Volume of ischemic lesions was not associated with survival after 1, 2 or 5 years. A cluster of 125.18cc was found to be significantly associated with development of postoperative ischemia. 73% of this cluster was situated in the arterial territory of the right middle cerebral artery (MCA), limited by the border of the posterior cerebral artery (PCA), and the watershed area between the right MCA and the right anterior cerebral artery (ACA). Significant areas were located in the frontal lobes, spanning into the right temporo-occipital region, and predominantly included right and left thalamus, caudate nucleus, putamen, pallidum, as well as right temporal gyri and insular cortex, and parts of the right corticospinal tract, longitudinal fasciculi and superior thalamic radiation. CONCLUSION We found slightly more and larger ischemic lesions in the right than left hemisphere after glioma resection. A statistically significant cluster of voxels of postoperative ischemia was found in the territory of the right MCA and watershed area of the right ACA. Exploration of the spatial distribution of these lesions could help elucidate their etiology and form the basis for predicting clinically relevant postoperative ischemia.


Sign in / Sign up

Export Citation Format

Share Document