scholarly journals CarrierSeq: a sequence analysis workflow for low-input nanopore sequencing

2017 ◽  
Author(s):  
Angel Mojarro ◽  
Julie Hachey ◽  
Gary Ruvkun ◽  
Maria T. Zuber ◽  
Christopher E. Carr

AbstractMotivationLong-read nanopore sequencing technology is of particular significance for taxonomic identification at or below the species level. For many environmental samples, the total extractable DNA is far below the current input requirements of nanopore sequencing, preventing “sample to sequence” metagenomics from low-biomass or recalcitrant samples.ResultsHere we address this problem by employing carrier sequencing, a method to sequence low-input DNA by preparing the target DNA with a genomic carrier to achieve ideal library preparation and sequencing stoichiometry without amplification. We then use CarrierSeq, a sequence analysis workflow to identify the low-input target reads from the genomic carrier. We tested CarrierSeq experimentally by sequencing from a combination of 0.2 ng Bacillus subtilis ATCC 6633 DNA in a background of 1 μg Enterobacteria phage λ DNA. After filtering of carrier, low quality, and low complexity reads, we detected target reads (B. subtilis), contamination reads, and “high quality noise reads” (HQNRs) not mapping to the carrier, target or known lab contaminants. These reads appear to be artifacts of the nanopore sequencing process as they are associated with specific channels (pores). By treating reads as a Poisson arrival process, we implement a statistical test to reject data from channels dominated by HQNRs while retaining target reads.AvailabilityCarrierSeq is an open-source bash script with supporting python scripts which leverage a variety of bioinformatics software packages on macOS and Ubuntu. Supplemental documentation is available from Github - https://github.com/amojarro/carrierseq. In addition, we have compiled all required dependencies in a Docker image available from - https://hub.docker.com/r/mojarro/carrierseq.

2018 ◽  
Vol 19 (1) ◽  
Author(s):  
Angel Mojarro ◽  
Julie Hachey ◽  
Gary Ruvkun ◽  
Maria T. Zuber ◽  
Christopher E. Carr

2018 ◽  
Author(s):  
Natalie Ring ◽  
Jonathan Abrahams ◽  
Miten Jain ◽  
Hugh Olsen ◽  
Andrew Preston ◽  
...  

ABSTRACTThe genome of Bordetella pertussis is complex, with high GC content and many repeats, each longer than 1,000 bp. Short-read DNA sequencing is unable to resolve the structure of the genome; however, long-read sequencing offers the opportunity to produce single-contig B. pertussis assemblies using sequencing reads which are longer than the repetitive sections. We used an R9.4 MinION flow cell and barcoding to sequence five B. pertussis strains in a single sequencing run. We then trialled combinations of the many nanopore-user-community-built long-read analysis tools to establish the current optimal assembly pipeline for B. pertussis genome sequences. Our best long-read-only assemblies were produced by Canu read correction followed by assembly with Flye and polishing with Nanopolish, whilst the best hybrids (using nanopore and Illumina reads together) were produced by Canu correction followed by Unicycler. This pipeline produced closed genome sequences for four strains, revealing inter-strain genomic rearrangement. However, read mapping to the Tohama I reference genome suggests that the remaining strain contains an ultra-long duplicated region (over 100 kbp), which was not resolved by our pipeline. We have therefore demonstrated the ability to resolve the structure of several B. pertussis strains per single barcoded nanopore flow cell, but the genomes with highest complexity (e.g. very large duplicated regions) remain only partially resolved using the standard library preparation and will require an alternative library preparation method. For full strain characterisation, we recommend hybrid assembly of long and short reads together; for comparison of genome arrangement, assembly using long reads alone is sufficient.DATA SUMMARYFinal sequence read files (fastq) for all 5 strains have been deposited in the SRA, BioProject PRJNA478201, accession numbers SAMN09500966, SAMN09500967, SAMN09500968, SAMN09500969, SAMN09500970A full list of accession numbers for Illumina sequence reads is available in Table S1Assembly tests, basecalled read sets and reference materials are available from figshare: https://figshare.com/projects/Resolving_the_complex_Bordetella_pertussis_genome_using_barcoded_nanopore_sequencing/31313Genome sequences for B. pertussis strains UK36, UK38, UK39, UK48 and UK76 have been deposited in GenBank; accession numbers: CP031289, CP031112, CP031113, QRAX00000000, CP031114Source code and full commands used are available from Github: https://github.com/nataliering/Resolving-the-complex-Bordetella-pertussis-genome-using-barcoded-nanopore-sequencingIMPACT STATEMENTOver the past two decades, whole genome sequencing has allowed us to understand microbial pathogenicity and evolution on an unprecedented level. However, repetitive regions, like those found throughout the B. pertussis genome, have confounded our ability to resolve complex genomes using short-read sequencing technologies alone. To produce closed B. pertussis genome sequences it is necessary to use a sequencing technology which can generate reads longer than these problematic genomic regions. Using barcoded nanopore sequencing, we show that multiple B. pertussis genomes can be resolved per flow cell. Use of our assembly pipeline to resolve further B. pertussis genomes will advance understanding of how genome-level differences affect the phenotypes of strains which appear monomorphic at nucleotide-level.This work expands the recently emergent theme that even the most complex genomes can be resolved with sufficiently long sequencing reads. Additionally, we utilise a more widely accessible alternative sequencing platform to the Pacific Biosciences platform already used by large research centres such as the CDC. Our optimisation process, moreover, shows that the analysis tools favoured by the sequencing community do not necessarily produce the most accurate assemblies for all organisms; pipeline optimisation may therefore be beneficial in studies of unusually complex genomes.


protocols.io ◽  
2018 ◽  
Author(s):  
Christian Blumenscheit ◽  
Adrian Viehweger ◽  
celia Diezel

protocols.io ◽  
2018 ◽  
Author(s):  
Christian Blumenscheit ◽  
Adrian Viehweger ◽  
celia Diezel

2021 ◽  
Author(s):  
Yelena Chernyavskaya ◽  
Xiaofei Zhang ◽  
Jinze Liu ◽  
Jessica S. Blackburn

Nanopore sequencing technology has revolutionized the field of genome biology with its ability to generate extra-long reads that can resolve regions of the genome that were previously inaccessible to short-read sequencing platforms. Although long-read sequencing has been used to resolve several vertebrate genomes, a nanopore-based zebrafish assembly has not yet been released. Over 50% of the zebrafish genome consists of difficult to map, highly repetitive, low complexity elements that pose inherent problems for short-read sequencers and assemblers. We used nanopore sequencing to improve upon and resolve the issues plaguing the current zebrafish reference assembly (GRCz11). Our long-read assembly improved the current resolution of the reference genome by identifying 1,697 novel insertions and deletions over 1Kb in length and placing 106 previously unlocalized scaffolds. We also discovered additional sites of retrotransposon integration previously unreported in GRCz11 and observed their expression in adult zebrafish under physiologic conditions, implying they have active mobility in the zebrafish genome and contribute to the ever-changing genomic landscape.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii406-iii406
Author(s):  
Julien Masliah-Planchon ◽  
Elodie Girard ◽  
Philipp Euskirchen ◽  
Christine Bourneix ◽  
Delphine Lequin ◽  
...  

Abstract Medulloblastoma (MB) can be classified into four molecular subgroups (WNT group, SHH group, group 3, and group 4). The gold standard of assignment of molecular subgroup through DNA methylation profiling uses Illumina EPIC array. However, this tool has some limitation in terms of cost and timing, in order to get the results soon enough for clinical use. We present an alternative DNA methylation assay based on nanopore sequencing efficient for rapid, cheaper, and reliable subgrouping of clinical MB samples. Low-depth whole genome with long-read single-molecule nanopore sequencing was used to simultaneously assess copy number profile and MB subgrouping based on DNA methylation. The DNA methylation data generated by Nanopore sequencing were compared to a publicly available reference cohort comprising over 2,800 brain tumors including the four subgroups of MB (Capper et al. Nature; 2018) to generate a score that estimates a confidence with a tumor group assignment. Among the 24 MB analyzed with nanopore sequencing (six WNT, nine SHH, five group 3, and four group 4), all of them were classified in the appropriate subgroup established by expression-based Nanostring subgrouping. In addition to the subgrouping, we also examine the genomic profile. Furthermore, all previously identified clinically relevant genomic rearrangements (mostly MYC and MYCN amplifications) were also detected with our assay. In conclusion, we are confirming the full reliability of nanopore sequencing as a novel rapid and cheap assay for methylation-based MB subgrouping. We now plan to implement this technology to other embryonal tumors of the central nervous system.


Author(s):  
Martin Philpott ◽  
Jonathan Watson ◽  
Anjan Thakurta ◽  
Tom Brown ◽  
Tom Brown ◽  
...  

AbstractHere we describe single-cell corrected long-read sequencing (scCOLOR-seq), which enables error correction of barcode and unique molecular identifier oligonucleotide sequences and permits standalone cDNA nanopore sequencing of single cells. Barcodes and unique molecular identifiers are synthesized using dimeric nucleotide building blocks that allow error detection. We illustrate the use of the method for evaluating barcode assignment accuracy, differential isoform usage in myeloma cell lines, and fusion transcript detection in a sarcoma cell line.


Author(s):  
Yiran Liang ◽  
Hayden Acor ◽  
Michaela A. McCown ◽  
Andikan J. Nwosu ◽  
Hannah Boekweg ◽  
...  

2021 ◽  
Vol 19 (2) ◽  
pp. 769-785 ◽  
Author(s):  
Erwan Sallard ◽  
José Halloy ◽  
Didier Casane ◽  
Etienne Decroly ◽  
Jacques van Helden

AbstractSARS-CoV-2 is a new human coronavirus (CoV), which emerged in China in late 2019 and is responsible for the global COVID-19 pandemic that caused more than 97 million infections and 2 million deaths in 12 months. Understanding the origin of this virus is an important issue, and it is necessary to determine the mechanisms of viral dissemination in order to contain future epidemics. Based on phylogenetic inferences, sequence analysis and structure–function relationships of coronavirus proteins, informed by the knowledge currently available on the virus, we discuss the different scenarios on the origin—natural or synthetic—of the virus. The data currently available are not sufficient to firmly assert whether SARS-CoV2 results from a zoonotic emergence or from an accidental escape of a laboratory strain. This question needs to be solved because it has important consequences on the risk/benefit balance of our interactions with ecosystems, on intensive breeding of wild and domestic animals, on some laboratory practices and on scientific policy and biosafety regulations. Regardless of COVID-19 origin, studying the evolution of the molecular mechanisms involved in the emergence of pandemic viruses is essential to develop therapeutic and vaccine strategies and to prevent future zoonoses. This article is a translation and update of a French article published in Médecine/Sciences, August/September 2020 (10.1051/medsci/2020123).


2013 ◽  
Vol 63 (Pt_7) ◽  
pp. 2588-2593 ◽  
Author(s):  
Bárbara Almeida ◽  
Ivone Vaz-Moreira ◽  
Peter Schumann ◽  
Olga C. Nunes ◽  
Gilda Carvalho ◽  
...  

A Gram-positive, aerobic, non-motile, non-endospore-forming rod-shaped bacterium with ibuprofen-degrading capacity, designated strain I11T, was isolated from activated sludge from a wastewater treatment plant. The major respiratory quinone was demethylmenaquinone DMK-7, C18 : 1 cis9 was the predominant fatty acid, phosphatidylglycerol was the predominant polar lipid, the cell wall contained meso-diaminopimelic acid as the diagnostic diamino acid and the G+C content of the genomic DNA was 74.1 mol%. On the basis of 16S rRNA gene sequence analysis, the closest phylogenetic neighbours of strain I11T were Patulibacter ginsengiterrae CECT 7603T (96.8 % similarity), Patulibacter minatonensis DSM 18081T (96.6 %) and Patulibacter americanus DSM 16676T (96.6 %). Phenotypic characterization supports the inclusion of strain I11T within the genus Patulibacter (phylum Actinobacteria) . However, distinctive features and 16S rRNA gene sequence analysis suggest that is represents a novel species, for which the name Patulibacter medicamentivorans sp. nov. is proposed. The type strain is I11T ( = DSM 25962T = CECT 8141T).


Sign in / Sign up

Export Citation Format

Share Document