scholarly journals Expression of lamina proteins Lamin Dm0 and Kugelkern suppresses stem cell proliferation

2017 ◽  
Author(s):  
Roman Petrovsky ◽  
Jörg Großhans

AbstractThe nuclear lamina is involved in numerous cellular functions, such as gene expression, nuclear organization, nuclear stability, and cell proliferation. The mechanism underlying the involvement of lamina is often not clear, especially in physiological contexts. Here we investigate how the farnesylated lamina proteins Lamin Dm0 and Kugelkern are linked to proliferation control of intestinal stem cells (ISCs) in adult Drosophila flies by loss-of-function and gain-of-function experiments. We found that ISCs mutant for Lamin Dm0 or Kugelkern proliferate, whereas overexpression of Lamin Dm0 or Kugelkern strongly suppressed proliferation. The anti-proliferative activity is, at least in part, due to suppression of Jak/Stat but not Delta/Notch signalling. Lamin Dm0 expression suppresses Jak/Stat signalling by normalization of about 50% of the Stat target genes in ISCs.Author summaryThe nuclear lamina is a protein meshwork that lies beneath the inner side of the nuclear membrane and interacts with nuclear pores, chromatin and the cytoskeleton. Changes in proteins of the nuclear lamina cause a wide range of diseases which are often not well understood. It is hypothesized that impairment of stem cell function, as a result of lamina changes, might play a key role in some of those diseases. Here we use the well characterized Drosophila midgut as a system to investigate the role of lamina proteins Lamin Dm0 and Kugelkern on stem cell proliferation.

Nanomaterials ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 761 ◽  
Author(s):  
Ahmed Abdal Dayem ◽  
Soo Lee ◽  
Ssang-Goo Cho

Nanotechnology has a wide range of medical and industrial applications. The impact of metallic nanoparticles (NPs) on the proliferation and differentiation of normal, cancer, and stem cells is well-studied. The preparation of NPs, along with their physicochemical properties, is related to their biological function. Interestingly, various mechanisms are implicated in metallic NP-induced cellular proliferation and differentiation, such as modulation of signaling pathways, generation of reactive oxygen species, and regulation of various transcription factors. In this review, we will shed light on the biomedical application of metallic NPs and the interaction between NPs and the cellular components. The in vitro and in vivo influence of metallic NPs on stem cell differentiation and proliferation, as well as the mechanisms behind potential toxicity, will be explored. A better understanding of the limitations related to the application of metallic NPs on stem cell proliferation and differentiation will afford clues for optimal design and preparation of metallic NPs for the modulation of stem cell functions and for clinical application in regenerative medicine.


2010 ◽  
Vol 30 (8) ◽  
pp. 1997-2005 ◽  
Author(s):  
GuoQiang Sun ◽  
Kamil Alzayady ◽  
Richard Stewart ◽  
Peng Ye ◽  
Su Yang ◽  
...  

ABSTRACT Lysine-specific demethylase 1 (LSD1) functions as a transcriptional coregulator by modulating histone methylation. Its role in neural stem cells has not been studied. We show here for the first time that LSD1 serves as a key regulator of neural stem cell proliferation. Inhibition of LSD1 activity or knockdown of LSD1 expression led to dramatically reduced neural stem cell proliferation. LSD1 is recruited by nuclear receptor TLX, an essential neural stem cell regulator, to the promoters of TLX target genes to repress the expression of these genes, which are known regulators of cell proliferation. The importance of LSD1 function in neural stem cells was further supported by the observation that intracranial viral transduction of the LSD1 small interfering RNA (siRNA) or intraperitoneal injection of the LSD1 inhibitors pargyline and tranylcypromine led to dramatically reduced neural progenitor proliferation in the hippocampal dentate gyri of wild-type adult mouse brains. However, knockout of TLX expression abolished the inhibitory effect of pargyline and tranylcypromine on neural progenitor proliferation, suggesting that TLX is critical for the LSD1 inhibitor effect. These findings revealed a novel role for LSD1 in neural stem cell proliferation and uncovered a mechanism for neural stem cell proliferation through recruitment of LSD1 to modulate TLX activity.


Sign in / Sign up

Export Citation Format

Share Document