scholarly journals Isolation of phosphate solubilizing Pseudomonas strains from apple rhizosphere in the Trans Himalayan region of Himachal Pradesh, India

2017 ◽  
Author(s):  
Ranjna Sharma ◽  
Joginder Pal ◽  
Mohinder Kaur

AbstractTotal fifteen phosphate solubilizing bacteria were isolated from rhizosphere soil of apple tree on Kings’ B medium belonging to genus Pseudomonas spp. They were characterized on the basis of morphological and biochemical characteristics. Preliminary selection as phosphate solubilizing bacteria were done on the basis of formation of transparent zone around the colony on Pikovskaya’s agar medium containing 0.5% triclcium phosphate (TCP). Maximum in vitro phosphate solubilization on Pikovskaya’s agar plates after 72h incubation at 28°C was shown by An-15-Mg (46 mm), whereas in case of broth, again this strain showed maximum tricalcium phosphate (TCP) solubilization (76 μg/ml). The pH of each inoculated broth was recorded daily and dropped significantly (pH 7.0-3.99). All the Pseudomonas isolates were further evaluated for overall plant growth promoting traits. Greatest siderophore activity was exhibited by An-14-Mg (71.23 %SU) followed by An-15-Mg (70.12 %SU) which were statiscally at par with each other. Whereas, maximum IAA production was observed again in An-15-Mg (95 μg/ml). This isolate also showed the maximum production of HCN and ammonia. 16S rDNA and phylogenetic analysis showed that strain An-15-Mg exhibits 99% level of similarity with Pseudomonas aeruginosa. Therefore, it was designated as Pseudomonas aeruginosa strain An-15-Mg. HPLC analysis showed that the Pseudomonas aeruginosa strain An-15-Mg produced maximum concentration of succinic acid, malonic, citric and malic acid with small amounts of schimic, quinic, tartaric, fumaric and lactic acids. The strain An-15-Mg possessed phosphate solubilization as major PGP trait along with different PGP traits. The potential phosphate solubilizing strain of Pseudomonas aeruginosa was reported first time as PGPR which lives in close association with apple tree without harming the plant, therefore could be used as a promising phosphate solubilizer and biofertilizer in apple crop grown in high hills of Himachal Pradesh.Authors contributionAll authors made significant efforts towards the completion of this research work and preparation of manuscript timely. Author Ranjna Sharma has done collection of soil samples of apple tree from two districts, isolation and characterization of phosphate solubilizing Pseudomonas isolates and their screening for different PGPT’s, phenotypic characteriazation, 16S rRNA analysis and statistical analysis. Author S P Singh has done HPLC analysis at their institute. Author Ankita has done sequence analysis and phylogenetic tree preparation. Author Mohinder Kaur is my mentor and generated idea regarding this work. She guided me in completing this work successfully as well as manuscript writing.

2018 ◽  
Vol 10 (4) ◽  
pp. 1204-1209
Author(s):  
Mahendra Singh

The objective of the present study was to isolate and characterize most efficient phosphate solubilizing bacteria (PSB) from rice rhizosphere. The study was carried out during the Kharif season’2018 at Department of Soil Science and Agricultural Chemistry, Bihar Agricultural University, Sabour, Bhagalpur, Bihar. The availability of phosphorous to plants for uptake and utilization is limited in soil due to fixation in the form of Fe-P, Al-P and Ca-P. The use of phosphate solubilizing bacteria can prove to be helpful measure to supply phosphorous to the crops to increase the productivity. In the present investigation, a total of 10 isolates were obtained from rice rhizosphere soil samples. All ten isolated isolates were shown phosphorus solubilization. Out of ten isolates BAU3 was found to be most potent phosphate solubilizers showing clear halo zone around its colony. The isolate BAU3 showed 20.00 mm phosphate solubilizing halo zone around its colony. The solubilization index (SI) of the isolate BAU3 was also calculated at the end of the incubation period and observed phosphate solubilization index (SI) of 3.22.  The isolate BAU3 showed maximum insoluble phosphate solubilization of 450.24 ?g ml-1 and isolates BAU3 was selected for subsequent studies. The bacterial isolates BAU3 was gram negative, non-spore forming rods shaped. On the basis of the 16SrDNA sequencing, isolate BAU3 was identified as Enterobacter cloacae strain BAU3 (Genebank Accession No.   MK033472). The isolated strain of bacterial has potential to solubilize insoluble phosphorus and it can be utilized for preparation of microbial inoculants or biofertilizers.


2021 ◽  
Vol 16 (8) ◽  
pp. 110-117
Author(s):  
Kannan Abhirami ◽  
K. Jayakumar

Phosphorous is considered as a major parameter for crop yield. Its availability to plant is independent of its abundance. For the plants to utilize phosphorous, it is to be converted to absorbable form. Here, the part rendered by phosphate solubilizing bacteria is significant for it plays a crucial role in the formation of plant usable phosphate from organic forms. In the present work, an effort had been made to isolate and identify phosphate solubilising bacterial isolate from the rhizhospheric soils of various plants in Ponthenpuzha forest. One of the isolate from Cymbopogon citrates responded positively to Pikovskaya’s medium by producing a halo zone during in vitro culture. Colony features and 16S rRNA sequence analysis identified the isolate as Burkholderia sps. We have reported the presence of genus Burkholderia in the rhizospheric zone of Cymbopogon citratus. Further studies are warranted for species level identification of the isolate.


2020 ◽  
Vol 1 (2) ◽  
pp. 37-51
Author(s):  
C. E. Oshoma ◽  
S. O. Nwodo ◽  
I. S. Obuekwe

The processing of cassava into value-added products is associated with discharge of effluents which contain substances that have adverse effect on the environment. Remediative activity of indigenous bacteria can be stimulated by supplementing effluents with phosphorus. Rock phosphate (RP) solubilization and enzymatic activities from bacteria on the cassava mill effluents (CME) contaminated soil was investigated. Soil mixed with varying concentrations of CME (0, 100, 200, 300, 400, 500 and 600 ml) and 10 g of RP were analyzed on days 0 and 16. Parameters analyzed were changes in pH, heterotrophic bacteria load, phosphate-solubilizing bacteria load, available phosphorus, acid phosphatase, cellulase and urease concentrations. The results showed that the medium containing 400 ml CME contaminated soil had the highest phosphate-solubilizing bacteria load (12.60 ± 2.08 x 106 cfu/ml), available phosphorus (126.00 ± 4.08 mg/kg), acid phosphatase (9.54 ± 0.51 mgN/g/min), cellulase (15.24 ± 0.81 mg/g/6h) and urease concentration (2.15±0.22 mg/g/2h). The control had the lowest phosphate-solubilizing bacteria load and enzymatic activity. Biostimulation of indigenous bacteria to enhance the degradation of cassava mill effluent-contaminated soil, using rock phosphate, showed promising results. This implies that rock phosphate solubilization by indigenous bacteria in CME-contaminated soils could be important for the remediation and reclamation of contaminated lands.


2019 ◽  
Vol 60 (5) ◽  
pp. 985-995
Author(s):  
Yusur Ramzi ◽  
Hutaf A. A. Alsalim

Sixteen soil samples were collected from wheat, barley and yellow corn rhizosphere in Abu-Ghraib, Aqraqof, Latifieh,Tarmiah, Jadriya and  of Agriculture in Baghdad university/ Baghdad city. The results found nine phosphate solubilizing bacteria (PSB) isolates (Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9), formed clear zones on National Botanical Research Institute's (NBRIP) agar. The solubility index (SI) of PSB isolates ranged from 2.00 to 3.66. Y4 have the highest SI (3.66) followed by Y3 and Y6 (3.33). Phosphate solubilization abilities varying from (20.10-39.00 μg.ml-1), Y4 was the highest (39.00 μg.ml-1) followed by Y3 (37.00μg.ml-1). The results of hydrolytic enzymes production showed that almost all nine isolates are able to produce protease and pectinase, while Y1 and Y2 showed negative results in cellulase production. Maximum ability for hydrogen cyanide (HCN) and indole acetic acid (IAA) production were showed byY3 and Y4 isolates. The isolate Y4 was found to be the most efficient isolate, so it was selected identified as Bacillus cereus using biochemical tests confirmed by VITEC 2 compact system. The results of High performance liquid chromatography (HPLC) revealed that Bacillus cereus produce oxalic acid (2.996), citric acid (9.117) and malic acid (3.734). Bacillus cereus (Y4) enhanced the growth of mung bean plants. A significant increase in branches number (12.33), plant length (83.0cm), fresh weight (27.25 g) and dry weight (1.427g) were obtained compared with control treatments. The main objective of this study is to isolate PSB and evaluate their roles in plant growth promotion. The results showed the high phosphate solubilization efficiency of PSB isolates and the identified isolates was found to be good enough for plant growth promoting.


2020 ◽  
Vol 10 (2) ◽  
pp. 5161-5173

Phosphorus (P) is one of the essential macronutrients needed for the plant growth, other than nitrogen and potassium. Most phosphorus remains as insoluble form in soils and the plants only can uptake the phosphorus nutrient in soluble forms. Phosphate solubilizing bacteria (PSB) dissolves the phosphorus and make it available for plants. In this study, Soil samples were collected and screened for PSB on PK medium. PSB colonies with the highest phosphate solubilization ability were chosen and used for studying its rhizosphere effect on Capsicum frutescens by pot experiment.. It was evidenced that selected PSB strain could solubilize phosphate in PK medium and modified PK broth. Besides, it provided available phosphorus for plants and enhanced the plant growth in pot experiment.


2017 ◽  
Vol 66 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Jian Zhang ◽  
Peng Cheng Wang ◽  
Ling Fang ◽  
Qi-An Zhang ◽  
Cong Sheng Yan ◽  
...  

Phosphorus is a major essential macronutrient for plant growth, and most of the phosphorus in soil remains in insoluble form. Highly efficient phosphate-solubilizing bacteria can be used to increase phosphorus in the plant rhizosphere. In this study, 13 isolates were obtained from waste mushroom residues, which were composed of cotton seed hulls, corn cob, biogas residues, and wood flour. NBRIP solid medium was used for isolation according to the dissolved phosphorus halo. Eight isolates produced indole acetic acid (61.5%), and six isolates produced siderophores (46.2%). Three highest phosphate-dissolving bacterial isolates, namely, M01, M04, and M11, were evaluated for their beneficial effects on the early growth of tomato plants (Solanum lycopersicum L. Wanza 15). Strains M01, M04, and M11 significantly increased the shoot dry weight by 30.5%, 32.6%, and 26.2%, and root dry weight by 27.1%, 33.1%, and 25.6%, respectively. Based on 16S rRNA gene sequence comparisons and phylogenetic positions, strains M01 and M04 belonged to the genus Acinetobacter, and strain M11 belonged to the genus Ochrobactrum. The findings suggest that waste mushroom residues are a potential resource of plant growth-promoting bacteria exhibiting satisfactory phosphate-solubilizing for sustainable agriculture.


2014 ◽  
Vol 955-959 ◽  
pp. 407-410
Author(s):  
Li Bin Zhao ◽  
Xin Xin Wang ◽  
Chen Li ◽  
Yu Chen ◽  
Wei An ◽  
...  

Phosphate-solubilizing bacteria were extensively studied in many environment. However, little is known about them in drill cuttings, as wastes from drilling process. A phosphate-solubilizing bacterium strain PSB13 was isolated from petroleum-contaminated drill cuttings. This strain was identified asPseudochrobactrumsp. based on its 16S rDNA sequence and phenotypic characteristics. This strain could solubilize 97.6 μg/ml phosphates in 6 days when grown in NBRIP liquid medium. The increase in solubilization of phosphate coincided with the drop in pH, which indicates organic acid was responsible for the phosphate-solubilization. Phosphate-solubilizing bacterium was reported in drill cuttings for the first time, which suggests its potential in the bioremediation of petroleum-contaminated drill cuttings.


Sign in / Sign up

Export Citation Format

Share Document