scholarly journals Isolation and characterization of insoluble inorganic phosphate solubilizer rice rhizosphere strain Enterobacter cloacae BAU3

2018 ◽  
Vol 10 (4) ◽  
pp. 1204-1209
Author(s):  
Mahendra Singh

The objective of the present study was to isolate and characterize most efficient phosphate solubilizing bacteria (PSB) from rice rhizosphere. The study was carried out during the Kharif season’2018 at Department of Soil Science and Agricultural Chemistry, Bihar Agricultural University, Sabour, Bhagalpur, Bihar. The availability of phosphorous to plants for uptake and utilization is limited in soil due to fixation in the form of Fe-P, Al-P and Ca-P. The use of phosphate solubilizing bacteria can prove to be helpful measure to supply phosphorous to the crops to increase the productivity. In the present investigation, a total of 10 isolates were obtained from rice rhizosphere soil samples. All ten isolated isolates were shown phosphorus solubilization. Out of ten isolates BAU3 was found to be most potent phosphate solubilizers showing clear halo zone around its colony. The isolate BAU3 showed 20.00 mm phosphate solubilizing halo zone around its colony. The solubilization index (SI) of the isolate BAU3 was also calculated at the end of the incubation period and observed phosphate solubilization index (SI) of 3.22.  The isolate BAU3 showed maximum insoluble phosphate solubilization of 450.24 ?g ml-1 and isolates BAU3 was selected for subsequent studies. The bacterial isolates BAU3 was gram negative, non-spore forming rods shaped. On the basis of the 16SrDNA sequencing, isolate BAU3 was identified as Enterobacter cloacae strain BAU3 (Genebank Accession No.   MK033472). The isolated strain of bacterial has potential to solubilize insoluble phosphorus and it can be utilized for preparation of microbial inoculants or biofertilizers.

2021 ◽  
Vol 16 (8) ◽  
pp. 110-117
Author(s):  
Kannan Abhirami ◽  
K. Jayakumar

Phosphorous is considered as a major parameter for crop yield. Its availability to plant is independent of its abundance. For the plants to utilize phosphorous, it is to be converted to absorbable form. Here, the part rendered by phosphate solubilizing bacteria is significant for it plays a crucial role in the formation of plant usable phosphate from organic forms. In the present work, an effort had been made to isolate and identify phosphate solubilising bacterial isolate from the rhizhospheric soils of various plants in Ponthenpuzha forest. One of the isolate from Cymbopogon citrates responded positively to Pikovskaya’s medium by producing a halo zone during in vitro culture. Colony features and 16S rRNA sequence analysis identified the isolate as Burkholderia sps. We have reported the presence of genus Burkholderia in the rhizospheric zone of Cymbopogon citratus. Further studies are warranted for species level identification of the isolate.


2020 ◽  
Vol 10 (2) ◽  
pp. 5161-5173

Phosphorus (P) is one of the essential macronutrients needed for the plant growth, other than nitrogen and potassium. Most phosphorus remains as insoluble form in soils and the plants only can uptake the phosphorus nutrient in soluble forms. Phosphate solubilizing bacteria (PSB) dissolves the phosphorus and make it available for plants. In this study, Soil samples were collected and screened for PSB on PK medium. PSB colonies with the highest phosphate solubilization ability were chosen and used for studying its rhizosphere effect on Capsicum frutescens by pot experiment.. It was evidenced that selected PSB strain could solubilize phosphate in PK medium and modified PK broth. Besides, it provided available phosphorus for plants and enhanced the plant growth in pot experiment.


2014 ◽  
Vol 955-959 ◽  
pp. 407-410
Author(s):  
Li Bin Zhao ◽  
Xin Xin Wang ◽  
Chen Li ◽  
Yu Chen ◽  
Wei An ◽  
...  

Phosphate-solubilizing bacteria were extensively studied in many environment. However, little is known about them in drill cuttings, as wastes from drilling process. A phosphate-solubilizing bacterium strain PSB13 was isolated from petroleum-contaminated drill cuttings. This strain was identified asPseudochrobactrumsp. based on its 16S rDNA sequence and phenotypic characteristics. This strain could solubilize 97.6 μg/ml phosphates in 6 days when grown in NBRIP liquid medium. The increase in solubilization of phosphate coincided with the drop in pH, which indicates organic acid was responsible for the phosphate-solubilization. Phosphate-solubilizing bacterium was reported in drill cuttings for the first time, which suggests its potential in the bioremediation of petroleum-contaminated drill cuttings.


2010 ◽  
Vol 12 (3,4) ◽  
pp. 231 ◽  
Author(s):  
M. Ogut ◽  
F. Er ◽  
N. Kandemir

<p>Phosphate solubilizing bacteria can be used as soil or seed inoculum to increase soil phosphorus (P) availability for agricultural purposes. There is also a possibility of using these microorganisms to biotechnologically dissolve phosphate ores for the production of phosphorus fertilizers. Twenty-one soil samples were collected along a highway in Turkey to isolate phosphate solubilizing bacteria. A total of 20 phosphate solubilizers were isolated from the rhizosphere of wheat and maize grown in the pots, which contained the collected soil samples. The isolates were distributed among the genera, <em>Acinetobacter</em> (7), <em>Pseudomonas</em> (7), <em>Enterobacter</em> (2), <em>Enterococcus</em> (1), <em>Escherichia</em> (1), <em>Photorhabdus</em> (1), and <em>Bacillus</em> (1) as determined by the 16S rDNA gene sequence analysis. Since the <em>Acinetobacter</em> species were most effective in Pikovskaya’s agar, which contained tricalcium phosphate for the sole P-source, they were further experimented for the phosphate solubilization in batch cultures. The mean phosphorus dissolved in 5 day incubation ranged between 167 and 1022 ppm P. The initial pH of 7.8  dropped below 4.7 in six isolates with a gluconic acid production in the concentrations ranging between 27.5 and 37.5 mM. <em>Acinetobacter</em> isolates have some potential as an inoculum both for soil and biotechnological P-solubilization.</p>


2021 ◽  
Vol 911 (1) ◽  
pp. 012063
Author(s):  
Haswania ◽  
H Karim ◽  
A.A. Azis ◽  
N Iriany ◽  
O Jumadi

Abstract The aim of this study was to isolate and characterize the Phosphate solubilizing bacteria from the rhizosphere of Zea mays L., Jeneponto Regency. This research was conducted in several stages; i.e, sampling, medium preparation, sample dilution, isolation, characterization in the form of gram staining, biochemical tests, and quantitative tests of phosphate solubility. Soil samples were diluted in 0.9% NaCl and soil containing microbes was isolated on the Picovskaya medium. Three isolates were obtained which could dissolve phosphate, namely J2KN1, J3KR2, and J3TG3 isolates. The isolates were generally round in shape with raised elevations, white, slimy, smooth, shiny surface, milky white, shape like coccus and bacillus, and gram-negative. Some of the isolates had positive motility, indole, voges, methyl red, glucose, and sucrose fermentation in the biochemical test. The quantitative tests of the ability to dissolve phosphate showed that J2KN1 isolate had the highest concentration of 51.1 μM, and the J3KR1 and J3TG3 isolates had a concentration of 45.2 μM and 37.6 μM, respectively.


3 Biotech ◽  
2017 ◽  
Vol 7 (2) ◽  
Author(s):  
Supriya Tomer ◽  
Deep Chandra Suyal ◽  
Anjana Shukla ◽  
Jyoti Rajwar ◽  
Amit Yadav ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document