scholarly journals Dynamic representation of taste-related decisions in the gustatory insular cortex of mice

Author(s):  
Roberto Vincis ◽  
Ke Chen ◽  
Lindsey Czarnecki ◽  
John Chen ◽  
Alfredo Fontanini

SUMMARYResearch over the past decade has established the gustatory insular cortex (GC) as a model for studying how primary sensory cortices integrate multiple sensory, affective and cognitive signals. This integration occurs through time varying patterns of neural activity. Selective silencing of GC activity during specific temporal windows provided evidence for GC’s role in mediating taste palatability and expectation. Recent results also suggest that this area may play a role in decision making. However, existing data are limited to GC involvement in controlling the timing of stereotyped, orofacial reactions to aversive tastants during consumption. Here we present electrophysiological, chemogenetic and optogenetic results demonstrating the key role of GC in the execution of a taste-guided, reward-directed decision making task. Mice were trained in a taste-based, two-alternative choice task, in which they had to associate tastants sampled from a central spout with different actions (i.e., licking either a left or a right spout). Stimulus sampling and action were separated by a delay period. Electrophysiological recordings of single units revealed chemosensory processing during the sampling period and the emergence of task-related, cognitive signals during the delay period. Chemogenetic silencing of GC impaired task performance. Optogenetic silencing of GC allowed us to tease apart the contribution of activity during the sampling and the delay periods. While silencing during the sampling period had no effect, silencing during the delay period significantly impacted behavioral performance, demonstrating the importance of the cognitive signals processed by GC during this temporal window in driving decision making.Altogether, our data highlight a novel role of GC in controlling taste-guided, reward-directed choices and actions.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Liping Yu ◽  
Jiawei Hu ◽  
Chenlin Shi ◽  
Li Zhou ◽  
Maozhi Tian ◽  
...  

Working memory (WM), the ability to actively hold information in memory over a delay period of seconds, is a fundamental constituent of cognition. Delay-period activity in sensory cortices has been observed in WM tasks, but whether and when the activity plays a functional role for memory maintenance remains unclear. Here we investigated the causal role of auditory cortex (AC) for memory maintenance in mice performing an auditory WM task. Electrophysiological recordings revealed that AC neurons were active not only during the presentation of the auditory stimulus but also early in the delay period. Furthermore, optogenetic suppression of neural activity in AC during the stimulus epoch and early delay period impaired WM performance, whereas suppression later in the delay period did not. Thus, AC is essential for information encoding and maintenance in auditory WM task, especially during the early delay period.


2020 ◽  
Author(s):  
Carl E. Schoonover ◽  
Sarah N. Ohashi ◽  
Richard Axel ◽  
Andrew J.P. Fink

SummaryRepresentations of the external world in sensory cortices may define the identity of a stimulus and should therefore vary little over the life of the organism. In the olfactory system the primary olfactory cortex, piriform, is thought to determine odor identity1–6. We have performed electrophysiological recordings of single units maintained over weeks to examine the stability of odor representations in the mouse piriform cortex. We observed that odor representations drift over time, such that the performance of a linear classifier trained on the first recording day approaches chance levels after 32 days. Daily exposure to the same odorant slows the rate of drift, but when exposure is halted that rate increases once again. Moreover, behavioral salience does not stabilize odor representations. Continuous drift poses the question of the role of piriform in odor identification. This instability may reflect the unstructured connectivity of piriform7–15 and may be a property of other unstructured cortices.


2018 ◽  
Vol 41 ◽  
Author(s):  
Kevin Arceneaux

AbstractIntuitions guide decision-making, and looking to the evolutionary history of humans illuminates why some behavioral responses are more intuitive than others. Yet a place remains for cognitive processes to second-guess intuitive responses – that is, to be reflective – and individual differences abound in automatic, intuitive processing as well.


2014 ◽  
Vol 21 (1) ◽  
pp. 15-23 ◽  
Author(s):  
Helen Pryce ◽  
Amanda Hall

Shared decision-making (SDM), a component of patient-centered care, is the process in which the clinician and patient both participate in decision-making about treatment; information is shared between the parties and both agree with the decision. Shared decision-making is appropriate for health care conditions in which there is more than one evidence-based treatment or management option that have different benefits and risks. The patient's involvement ensures that the decisions regarding treatment are sensitive to the patient's values and preferences. Audiologic rehabilitation requires substantial behavior changes on the part of patients and includes benefits to their communication as well as compromises and potential risks. This article identifies the importance of shared decision-making in audiologic rehabilitation and the changes required to implement it effectively.


Sign in / Sign up

Export Citation Format

Share Document