scholarly journals Near-complete Lokiarchaeota genomes from complex environmental samples using long and short read metagenomic analyses

Author(s):  
Eva F. Caceres ◽  
William H. Lewis ◽  
Felix Homa ◽  
Tom Martin ◽  
Andreas Schramm ◽  
...  

AbstractAsgard archaea is a recently proposed superphylum currently comprised of five recognised phyla: Lokiarchaeota, Thorarchaeota, Odinarchaeota, Heimdallarchaeota and Helarchaeota. Members of this group have been identified based on culture-independent approaches with several metagenome-assembled genomes (MAGs) reconstructed to date. However, most of these genomes consist of several relatively small contigs, and, until recently, no complete Asgard archaea genome is yet available. Large scale phylogenetic analyses suggest that Asgard archaea represent the closest archaeal relatives of eukaryotes. In addition, members of this superphylum encode proteins that were originally thought to be specific to eukaryotes, including components of the trafficking machinery, cytoskeleton and endosomal sorting complexes required for transport (ESCRT). Yet, these findings have been questioned on the basis that the genome sequences that underpin them were assembled from metagenomic data, and could have been subjected to contamination and other assembly artefacts. Even though several lines of evidence indicate that the previously reported findings were not affected by these issues, having access to high-quality and preferentially fully closed Asgard archaea genomes is needed to definitively close this debate. Current long-read sequencing technologies such as Oxford Nanopore allow the generation of long reads in a high-throughput manner making them suitable for their use in metagenomics. Although the use of long reads is still limited in this field, recent analyses have shown that it is feasible to obtain complete or near-complete genomes of abundant members of mock communities and metagenomes of various level of complexity. Here, we show that long read metagenomics can be successfully applied to obtain near-complete genomes of low-abundant members of complex communities from sediment samples. We were able to reconstruct six MAGs from different Lokiarchaeota lineages that show high completeness and low fragmentation, with one of them being a near-complete genome only consisting of three contigs. Our analyses confirm that the eukaryote-like features previously associated with Lokiarchaeota are not the result of contamination or assembly artefacts, and can indeed be found in the newly reconstructed genomes.

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Jean-Marc Aury ◽  
Benjamin Istace

Abstract Single-molecule sequencing technologies have recently been commercialized by Pacific Biosciences and Oxford Nanopore with the promise of sequencing long DNA fragments (kilobases to megabases order) and then, using efficient algorithms, provide high quality assemblies in terms of contiguity and completeness of repetitive regions. However, the error rate of long-read technologies is higher than that of short-read technologies. This has a direct consequence on the base quality of genome assemblies, particularly in coding regions where sequencing errors can disrupt the coding frame of genes. In the case of diploid genomes, the consensus of a given gene can be a mixture between the two haplotypes and can lead to premature stop codons. Several methods have been developed to polish genome assemblies using short reads and generally, they inspect the nucleotide one by one, and provide a correction for each nucleotide of the input assembly. As a result, these algorithms are not able to properly process diploid genomes and they typically switch from one haplotype to another. Herein we proposed Hapo-G (Haplotype-Aware Polishing Of Genomes), a new algorithm capable of incorporating phasing information from high-quality reads (short or long-reads) to polish genome assemblies and in particular assemblies of diploid and heterozygous genomes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Davide Bolognini ◽  
Alberto Magi

Structural variants (SVs) are genomic rearrangements that involve at least 50 nucleotides and are known to have a serious impact on human health. While prior short-read sequencing technologies have often proved inadequate for a comprehensive assessment of structural variation, more recent long reads from Oxford Nanopore Technologies have already been proven invaluable for the discovery of large SVs and hold the potential to facilitate the resolution of the full SV spectrum. With many long-read sequencing studies to follow, it is crucial to assess factors affecting current SV calling pipelines for nanopore sequencing data. In this brief research report, we evaluate and compare the performances of five long-read SV callers across four long-read aligners using both real and synthetic nanopore datasets. In particular, we focus on the effects of read alignment, sequencing coverage, and variant allele depth on the detection and genotyping of SVs of different types and size ranges and provide insights into precision and recall of SV callsets generated by integrating the various long-read aligners and SV callers. The computational pipeline we propose is publicly available at https://github.com/davidebolo1993/EViNCe and can be adjusted to further evaluate future nanopore sequencing datasets.


2021 ◽  
Author(s):  
Brandon K. B. Seah ◽  
Estienne C. Swart

Ciliates are single-celled eukaryotes that eliminate specific, interspersed DNA sequences (internally eliminated sequences, IESs) from their genomes during development. These are challenging to annotate and assemble because IES-containing sequences are much less abundant in the cell than those without, and IES sequences themselves often contain repetitive and low-complexity sequences. Long read sequencing technologies from Pacific Biosciences and Oxford Nanopore have the potential to reconstruct longer IESs than has been possible with short reads, and also the ability to detect correlations of neighboring element elimination. Here we present BleTIES, a software toolkit for detecting, assembling, and analyzing IESs using mapped long reads. Availability and implementation: BleTIES is implemented in Python 3. Source code is available at https://github.com/Swart-lab/bleties (MIT license), and also distributed via Bioconda. Contact: [email protected] Supplementary information: Benchmarking of BleTIES with published sequence data.


2019 ◽  
Author(s):  
Lolita Lecompte ◽  
Pierre Peterlongo ◽  
Dominique Lavenier ◽  
Claire Lemaitre

AbstractMotivationStudies on structural variants (SV) are expanding rapidly. As a result, and thanks to third generation sequencing technologies, the number of discovered SVs is increasing, especially in the human genome. At the same time, for several applications such as clinical diagnoses, it is important to genotype newly sequenced individuals on well defined and characterized SVs. Whereas several SV genotypers have been developed for short read data, there is a lack of such dedicated tool to assess whether known SVs are present or not in a new long read sequenced sample, such as the one produced by Pacific Biosciences or Oxford Nanopore Technologies.ResultsWe present a novel method to genotype known SVs from long read sequencing data. The method is based on the generation of a set of reference sequences that represent the two alleles of each structural variant. Long reads are aligned to these reference sequences. Alignments are then analyzed and filtered out to keep only informative ones, to quantify and estimate the presence of each SV allele and the allele frequencies. We provide an implementation of the method, SVJedi, to genotype insertions and deletions with long reads. The tool has been applied to both simulated and real human datasets and achieves high genotyping accuracy. We also demonstrate that SV genotyping is considerably improved with SVJedi compared to other approaches, namely SV discovery and short read SV genotyping approaches.Availabilityhttps://github.com/llecompte/[email protected]


2018 ◽  
Author(s):  
Andrew J. Page ◽  
Jacqueline A. Keane

AbstractGenome sequencing is rapidly being adopted in reference labs and hospitals for bacterial outbreak investigation and diagnostics where time is critical. Seven gene multi-locus sequence typing is a standard tool for broadly classifying samples into sequence types, allowing, in many cases, to rule a sample in or out of an outbreak, or allowing for general characteristics about a bacterial strain to be inferred. Long read sequencing technologies, such as from PacBio or Oxford Nanopore, can produce read data within minutes of an experiment starting, unlike short read sequencing technologies which require many hours/days. However, the error rates of raw uncorrected long read data are very high. We present Krocus which can predict a sequence type directly from uncorrected long reads, and which was designed to consume read data as it is produced, providing results in minutes. It is the only tool which can do this from uncorrected long reads. We tested Krocus on over 600 samples sequenced with using long read sequencing technologies from PacBio and Oxford Nanopore. It provides sequence types on average within 90 seconds, with a sensitivity of 94% and specificity of 97%, directly from uncorrected raw sequence reads. The software is written in Python and is available under the open source license GNU GPL version 3.


2021 ◽  
Author(s):  
Jean-Marc Aury ◽  
Stefan Engelen ◽  
Benjamin Istace ◽  
Cécile Monat ◽  
Pauline Lasserre-Zuber ◽  
...  

AbstractThe sequencing of the wheat (Triticum aestivum) genome has been a methodological challenge for many years due to its large size (15.5 Gb), repeat content, and hexaploidy. Many initiatives aiming at obtaining a reference genome of cultivar Chinese Spring have been launched in the past years and it was achieved in 2018 as the result of a huge effort to combine short-read whole genome sequencing with many other resources. Reference-quality genome assemblies were then produced for other accessions but the rapid evolution of sequencing technologies offers opportunities to reach high-quality standards at lower cost. Here, we report on an optimized procedure based on long-reads produced on the ONT (Oxford Nanopore Technology) PromethION device to assemble the genome of the French bread wheat cultivar Renan. We provide the most contiguous and complete chromosome-scale assembly of a bread wheat genome to date, a resource that will be valuable for the crop community and will facilitate the rapid selection of agronomically important traits. We also provide the methodological standards to generate high-quality assemblies of complex genomes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhixing Feng ◽  
Jose C. Clemente ◽  
Brandon Wong ◽  
Eric E. Schadt

AbstractCellular genetic heterogeneity is common in many biological conditions including cancer, microbiome, and co-infection of multiple pathogens. Detecting and phasing minor variants play an instrumental role in deciphering cellular genetic heterogeneity, but they are still difficult tasks because of technological limitations. Recently, long-read sequencing technologies, including those by Pacific Biosciences and Oxford Nanopore, provide an opportunity to tackle these challenges. However, high error rates make it difficult to take full advantage of these technologies. To fill this gap, we introduce iGDA, an open-source tool that can accurately detect and phase minor single-nucleotide variants (SNVs), whose frequencies are as low as 0.2%, from raw long-read sequencing data. We also demonstrate that iGDA can accurately reconstruct haplotypes in closely related strains of the same species (divergence ≥0.011%) from long-read metagenomic data.


2020 ◽  
Author(s):  
Xiao Du ◽  
Lili Li ◽  
Fan Liang ◽  
Sanyang Liu ◽  
Wenxin Zhang ◽  
...  

AbstractThe importance of structural variants (SVs) on phenotypes and human diseases is now recognized. Although a variety of SV detection platforms and strategies that vary in sensitivity and specificity have been developed, few benchmarking procedures are available to confidently assess their performances in biological and clinical research. To facilitate the validation and application of those approaches, our work established an Asian reference material comprising identified benchmark regions and high-confidence SV calls. We established a high-confidence SV callset with 8,938 SVs in an EBV immortalized B lymphocyte line, by integrating four alignment-based SV callers [from 109× PacBio continuous long read (CLR), 22× PacBio circular consensus sequencing (CCS) reads, 104× Oxford Nanopore long reads, and 114× optical mapping platform (Bionano)] and one de novo assembly-based SV caller using CCS reads. A total of 544 randomly selected SVs were validated by PCR and Sanger sequencing, proofing the robustness of our SV calls. Combining trio-binning based haplotype assemblies, we established an SV benchmark for identification of false negatives and false positives by constructing the continuous high confident regions (CHCRs), which cover 1.46Gb and 6,882 SVs supported by at least one diploid haplotype assembly. Establishing high-confidence SV calls for a benchmark sample that has been characterized by multiple technologies provides a valuable resource for investigating SVs in human biology, disease, and clinical diagnosis.


2020 ◽  
Author(s):  
Zhixing Feng ◽  
Jose Clemente ◽  
Brandon Wong ◽  
Eric E. Schadt

AbstractCellular genetic heterogeneity is common in many biological conditions including cancer, microbiome, co-infection of multiple pathogens. Detecting and phasing minor variants, which is to determine whether multiple variants are from the same haplotype, play an instrumental role in deciphering cellular genetic heterogeneity, but are still difficult because of technological limitations. Recently, long-read sequencing technologies, including those by Pacific Biosciences and Oxford Nanopore, have provided an unprecedented opportunity to tackle these challenges. However, high error rates make it difficult to take full advantage of these technologies. To fill this gap, we introduce iGDA, an open-source tool that can accurately detect and phase minor single-nucleotide variants (SNVs), whose frequencies are as low as 0.2%, from raw long-read sequencing data. We also demonstrated that iGDA can accurately reconstruct haplotypes in closely-related strains of the same species (divergence ≥ 0.011%) from long-read metagenomic data. Our approach, therefore, presents a significant advance towards the complete deciphering of cellular genetic heterogeneity.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5233 ◽  
Author(s):  
Andrew J. Page ◽  
Jacqueline A. Keane

Genome sequencing is rapidly being adopted in reference labs and hospitals for bacterial outbreak investigation and diagnostics where time is critical. Seven gene multi-locus sequence typing is a standard tool for broadly classifying samples into sequence types (STs), allowing, in many cases, to rule a sample out of an outbreak, or allowing for general characteristics about a bacterial strain to be inferred. Long-read sequencing technologies, such as from Oxford Nanopore, can produce read data within minutes of an experiment starting, unlike short-read sequencing technologies which require many hours/days. However, the error rates of raw uncorrected long read data are very high. We present Krocus which can predict a ST directly from uncorrected long reads, and which was designed to consume read data as it is produced, providing results in minutes. It is the only tool which can do this from uncorrected long reads. We tested Krocus on over 700 isolates sequenced using long-read sequencing technologies from Pacific Biosciences and Oxford Nanopore. It provides STs for isolates on average within 90 s, with a sensitivity of 94% and specificity of 97% on real sample data, directly from uncorrected raw sequence reads. The software is written in Python and is available under the open source license GNU GPL version 3.


Sign in / Sign up

Export Citation Format

Share Document