scholarly journals WHIMP links the actin nucleation machinery to Src-family kinase signaling during protrusion and motility

2020 ◽  
Author(s):  
Shail Kabrawala ◽  
Margaret D. Zimmer ◽  
Kenneth G. Campellone

ABSTRACTCell motility is governed by cooperation between the Arp2/3 complex and nucleation factors from the Wiskott-Aldrich Syndrome Protein (WASP) family, which together assemble actin filament networks to drive membrane protrusion. Here we identify WHIMP (WAVE Homology In Membrane Protrusions) as a new member of the WASP family. The Whimp gene is encoded on the X-chromosome of multiple animals, including mice. Murine WHIMP promotes Arp2/3-dependent actin assembly, but is less potent than other nucleation factors. Nevertheless, WHIMP-mediated Arp2/3 activation enhances both plasma membrane ruffling and wound healing migration, whereas WHIMP depletion impairs protrusion and slows motility. WHIMP expression also increases Src-family kinase activity, and WHIMP-induced ruffles contain the additional nucleation factors WAVE1, WAVE2, and N-WASP, but not JMY or WASH. Perturbing the function of Src-family kinases, WAVE proteins, or Arp2/3 complex inhibits WHIMP-driven ruffling. These results suggest that WHIMP-mediated actin assembly plays a direct role in membrane protrusion, but also results in feedback control of tyrosine kinase signaling to modulate the activation of multiple WASP-family proteins.AUTHOR SUMMARYThe actin cytoskeleton is a collection of protein polymers that assemble and disassemble within cells at specific times and locations. Sophisticated cytoskeletal regulators called nucleation factors ensure that actin polymerizes when and where it is needed, and most nucleation factors are members of the Wiskott-Aldrich Syndrome Protein (WASP) family. Several of the 8 known WASP-family proteins function in cell motility, but how the different factors collaborate with one another is not well understood. In this study, we identified WHIMP, a new WASP-family member which is encoded on the X chromosome of a variety of animals. In mouse cells, WHIMP enhances cell motility by assembling actin filaments that push the cell membrane forward. Unexpectedly, WHIMP also activates tyrosine kinase enzymes, proteins that stimulate multiple WASP-family members during motility. Our results open new avenues of research into how nucleation factors cooperate during movement and how the molecular activities that underlie motility differ in distinct cell types and organisms.

2004 ◽  
Vol 380 (1) ◽  
pp. 1-17 ◽  
Author(s):  
Thomas H. MILLARD ◽  
Stewart J. SHARP ◽  
Laura M. MACHESKY

The assembly of a branched network of actin filaments provides the mechanical propulsion that drives a range of dynamic cellular processes, including cell motility. The Arp2/3 complex is a crucial component of such filament networks. Arp2/3 nucleates new actin filaments while bound to existing filaments, thus creating a branched network. In recent years, a number of proteins that activate the filament nucleation activity of Arp2/3 have been identified, most notably the WASP (Wiskott–Aldrich syndrome protein) family. WASP-family proteins activate the Arp2/3 complex, and consequently stimulate actin assembly, in response to extracellular signals. Structural studies have provided a significant refinement in our understanding of the molecular detail of how the Arp2/3 complex nucleates actin filaments. There has also been much progress towards an understanding of the complicated signalling processes that regulate WASP-family proteins. In addition, the use of gene disruption in a number of organisms has led to new insights into the specific functions of individual WASP-family members. The present review will discuss the Arp2/3 complex and its regulators, in particular the WASP-family proteins. Emphasis will be placed on recent developments in the field that have furthered our understanding of actin dynamics and cell motility.


2014 ◽  
Vol 207 (5) ◽  
pp. 589-598 ◽  
Author(s):  
Sebastien Tauzin ◽  
Taylor W. Starnes ◽  
Francisco Barros Becker ◽  
Pui-ying Lam ◽  
Anna Huttenlocher

Tissue damage induces early recruitment of neutrophils through redox-regulated Src family kinase (SFK) signaling in neutrophils. Redox-SFK signaling in epithelium is also necessary for wound resolution and tissue regeneration. How neutrophil-mediated inflammation resolves remains unclear. In this paper, we studied the interactions between macrophages and neutrophils in response to tissue damage in zebrafish and found that macrophages contact neutrophils and induce resolution via neutrophil reverse migration. We found that redox-SFK signaling through p22phox and Yes-related kinase is necessary for macrophage wound attraction and the subsequent reverse migration of neutrophils. Importantly, macrophage-specific reconstitution of p22phox revealed that macrophage redox signaling is necessary for neutrophil reverse migration. Thus, redox-SFK signaling in adjacent tissues is essential for coordinated leukocyte wound attraction and repulsion through pathways that involve contact-mediated guidance.


2011 ◽  
Vol 100 (3) ◽  
pp. 596a-597a
Author(s):  
Jonathon A. Ditlev ◽  
Bruce J. Mayer ◽  
Leslie M. Loew

2002 ◽  
Vol 277 (27) ◽  
pp. 24057-24066 ◽  
Author(s):  
Katherine L. Guttridge ◽  
J. Christopher Luft ◽  
Thomas L. Dawson ◽  
Eva Kozlowska ◽  
Nupam P. Mahajan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document