scholarly journals Distinct error rates for reference and non-reference genotypes estimated by pedigree analysis

2020 ◽  
Author(s):  
Richard J. Wang ◽  
Predrag Radivojac ◽  
Matthew W. Hahn

AbstractErrors in genotype calling can have perverse effects on genetic analyses, confounding association studies and obscuring rare variants. Analyses now routinely incorporate error rates to control for spurious findings. However, reliable estimates of the error rate can be difficult to obtain because of their variance between studies. Most studies also report only a single estimate of the error rate even though genotypes can be miscalled in more than one way. Here, we report a method for estimating the rates at which different types of genotyping errors occur at biallelic loci using pedigree information. Our method identifies potential genotyping errors by exploiting instances where the haplotypic phase has not been faithfully transmitted. The expected frequency of inconsistent phase depends on the combination of genotypes in a pedigree and the probability of miscalling each genotype. We develop a model that uses the differences in these frequencies to estimate rates for different types of genotype error. Simulations show that our method accurately estimates these error rates in a variety of scenarios. We apply this method to a dataset from the whole-genome sequencing of owl monkeys (Aotus nancymaae) in three-generation pedigrees. We find significant differences between estimates for different types of genotyping error, with the most common being homozygous reference sites miscalled as heterozygous and vice versa. The approach we describe is applicable to any set of genotypes where haplotypic phase can reliably be called, and should prove useful in helping to control for false discoveries.

Genetics ◽  
2020 ◽  
Vol 217 (1) ◽  
Author(s):  
Richard J Wang ◽  
Predrag Radivojac ◽  
Matthew W Hahn

Abstract Errors in genotype calling can have perverse effects on genetic analyses, confounding association studies, and obscuring rare variants. Analyses now routinely incorporate error rates to control for spurious findings. However, reliable estimates of the error rate can be difficult to obtain because of their variance between studies. Most studies also report only a single estimate of the error rate even though genotypes can be miscalled in more than one way. Here, we report a method for estimating the rates at which different types of genotyping errors occur at biallelic loci using pedigree information. Our method identifies potential genotyping errors by exploiting instances where the haplotypic phase has not been faithfully transmitted. The expected frequency of inconsistent phase depends on the combination of genotypes in a pedigree and the probability of miscalling each genotype. We develop a model that uses the differences in these frequencies to estimate rates for different types of genotype error. Simulations show that our method accurately estimates these error rates in a variety of scenarios. We apply this method to a dataset from the whole-genome sequencing of owl monkeys (Aotus nancymaae) in three-generation pedigrees. We find significant differences between estimates for different types of genotyping error, with the most common being homozygous reference sites miscalled as heterozygous and vice versa. The approach we describe is applicable to any set of genotypes where haplotypic phase can reliably be called and should prove useful in helping to control for false discoveries.


Biostatistics ◽  
2019 ◽  
Author(s):  
Jingchunzi Shi ◽  
Michael Boehnke ◽  
Seunggeun Lee

Summary Trans-ethnic meta-analysis is a powerful tool for detecting novel loci in genetic association studies. However, in the presence of heterogeneity among different populations, existing gene-/region-based rare variants meta-analysis methods may be unsatisfactory because they do not consider genetic similarity or dissimilarity among different populations. In response, we propose a score test under the modified random effects model for gene-/region-based rare variants associations. We adapt the kernel regression framework to construct the model and incorporate genetic similarities across populations into modeling the heterogeneity structure of the genetic effect coefficients. We use a resampling-based copula method to approximate asymptotic distribution of the test statistic, enabling efficient estimation of p-values. Simulation studies show that our proposed method controls type I error rates and increases power over existing approaches in the presence of heterogeneity. We illustrate our method by analyzing T2D-GENES consortium exome sequence data to explore rare variant associations with several traits.


Author(s):  
Kate Langley

This chapter reviews the evidence suggesting that there is a strong genetic component to ADHD and the efforts to identify the specific genetic factors that might be involved. It discusses the different types of genetic contributions, from common to rare variants, and the evidence that these are involved in the aetiology of the disorder. An overview of the methodological strategies employed, including genome-wide association studies (GWAS), polygenic risk score, and copy number variant (CNV) analyses, is undertaken, as well as discussion of the strengths and pitfalls of such work. The contradictory findings in the field and controversies that arise as a result are also explored. Finally, this chapter considers how the heritability of ADHD and specific genetic factors involved need to be examined in the context of clinical factors such as comorbidity and how these factors affect investigations into the genetics of ADHD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ming-Huei Chen ◽  
Achilleas Pitsillides ◽  
Qiong Yang

AbstractRecognizing that family data provide unique advantage of identifying rare risk variants in genetic association studies, many cohorts with related samples have gone through whole genome sequencing in large initiatives such as the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. Analyzing rare variants poses challenges for binary traits in that some genotype categories may have few or no observed events, causing bias and inflation in commonly used methods. Several methods have recently been proposed to better handle rare variants while accounting for family relationship, but their performances have not been thoroughly evaluated together. Here we compare several existing approaches including SAIGE but not limited to related samples using simulations based on the Framingham Heart Study samples and genotype data from Illumina HumanExome BeadChip where rare variants are the majority. We found that logistic regression with likelihood ratio test applied to related samples was the only approach that did not have inflated type I error rates in both single variant test (SVT) and gene-based tests, followed by Firth logistic regression that had inflation in its direction insensitive gene-based test at prevalence 0.01 only, applied to either related or unrelated samples, though theoretically logistic regression and Firth logistic regression do not account for relatedness in samples. SAIGE had inflation in SVT at prevalence 0.1 or lower and the inflation was eliminated with a minor allele count filter of 5. As for power, there was no approach that outperformed others consistently among all single variant tests and gene-based tests.


2018 ◽  
Author(s):  
Zhenchuan Wang ◽  
Qiuying Sha ◽  
Kui Zhang ◽  
Shuanglin Zhang

AbstractJoint analysis of multiple traits has recently become popular since it can increase statistical power to detect genetic variants and there is increasing evidence showing that pleiotropy is a widespread phenomenon in complex diseases. Currently, most of existing methods test the association between multiple traits and a single common variant. However, the variant-by-variant methods for common variant association studies may not be optimal for rare variant association studies due to the allelic heterogeneity as well as the extreme rarity of individual variants. In this article, we developed a statistical method by testing an optimally weighted combination of variants with multiple traits (TOWmuT) to test the association between multiple traits and a weighted combination of variants (rare and/or common) in a genomic region. TOWmuT is robust to the directions of effects of causal variants and is applicable to different types of traits. Using extensive simulation studies, we compared the performance of TOWmuT with the following five existing methods: gene association with multiple traits (GAMuT), multiple sequence kernel association test (MSKAT), adaptive weighting reverse regression (AWRR), single-TOW, and MANOVA. Our results showed that, in all of the simulation scenarios, TOWmuT has correct type I error rates and is consistently more powerful than the other five tests. We also illustrated the usefulness of TOWmuT by analyzing a whole-genome genotyping data from a lung function study.


2018 ◽  
Vol 7 (3.3) ◽  
pp. 273
Author(s):  
S Arunarani ◽  
R Gobinath

Authentication process identifies an individual to get an endorsed access by entering their login credentials. The inconvenience with this method is the user must remember the keywords, and the passwords can be predicted or if it is hard to guess it will be cracked through brute force. Due to this fault, this method is lack of integrity. Biometrics sample recognize a person based on his behavioral or physiological char-acteristics. Unimodal biometric systems have to resist with a different types of problems such as inconsistent data, intra-class variations, deceit attacks and high error rates. Multimodal biometrics implements secure authentication using various biometric traits. This survey gives us a wide scope for improving and enhancing the biometric applications. In this paper, we have explained multimodal biometrics to decrease the error rate and increase the security.  


2019 ◽  
Author(s):  
Zihan Zhao ◽  
Jianjun Zhang ◽  
Qiuying Sha ◽  
Han Hao

AbstractThe risk of many complex diseases is determined by a complex interplay of genetic and environmental factors. Advanced next generation sequencing technology makes identification of gene-environment (GE) interactions for both common and rare variants possible. However, most existing methods focus on testing the main effects of common and/or rare genetic variants. There are limited methods developed to test the effects of GE interactions for rare variants only or rare and common variants simultaneously. In this study, we develop novel approaches to test the effects of GE interactions of rare and/or common risk, and/or protective variants in sequencing association studies. We propose two approaches: 1) testing the effects of an optimally weighted combination of GE interactions for rare variants (TOW-GE); 2) testing the effects of a weighted combination of GE interactions for both rare and common variants (variable weight TOW-GE, VW-TOW-GE). Extensive simulation studies based on the Genetic Analysis Workshop 17 data show that the type I error rates of the proposed methods are well controlled. Compared to the existing interaction sequence kernel association test (ISKAT), TOW-GE is more powerful when there are GE interactions’ effects for rare risk and/or protective variants; VW-TOW-GE is more powerful when there are GE interactions’ effects for both rare and common risk and protective variants. Both TOW-GE and VW-TOW-GE are robust to the directions of effects of causal GE interactions. We demonstrate the applications of TOW-GE and VW-TOW-GE using an imputed data from the COPDGene Study.


2019 ◽  
Vol 28 (4) ◽  
pp. 1411-1431 ◽  
Author(s):  
Lauren Bislick ◽  
William D. Hula

Purpose This retrospective analysis examined group differences in error rate across 4 contextual variables (clusters vs. singletons, syllable position, number of syllables, and articulatory phonetic features) in adults with apraxia of speech (AOS) and adults with aphasia only. Group differences in the distribution of error type across contextual variables were also examined. Method Ten individuals with acquired AOS and aphasia and 11 individuals with aphasia participated in this study. In the context of a 2-group experimental design, the influence of 4 contextual variables on error rate and error type distribution was examined via repetition of 29 multisyllabic words. Error rates were analyzed using Bayesian methods, whereas distribution of error type was examined via descriptive statistics. Results There were 4 findings of robust differences between the 2 groups. These differences were found for syllable position, number of syllables, manner of articulation, and voicing. Group differences were less robust for clusters versus singletons and place of articulation. Results of error type distribution show a high proportion of distortion and substitution errors in speakers with AOS and a high proportion of substitution and omission errors in speakers with aphasia. Conclusion Findings add to the continued effort to improve the understanding and assessment of AOS and aphasia. Several contextual variables more consistently influenced breakdown in participants with AOS compared to participants with aphasia and should be considered during the diagnostic process. Supplemental Material https://doi.org/10.23641/asha.9701690


2014 ◽  
Vol 53 (05) ◽  
pp. 343-343

We have to report marginal changes in the empirical type I error rates for the cut-offs 2/3 and 4/7 of Table 4, Table 5 and Table 6 of the paper “Influence of Selection Bias on the Test Decision – A Simulation Study” by M. Tamm, E. Cramer, L. N. Kennes, N. Heussen (Methods Inf Med 2012; 51: 138 –143). In a small number of cases the kind of representation of numeric values in SAS has resulted in wrong categorization due to a numeric representation error of differences. We corrected the simulation by using the round function of SAS in the calculation process with the same seeds as before. For Table 4 the value for the cut-off 2/3 changes from 0.180323 to 0.153494. For Table 5 the value for the cut-off 4/7 changes from 0.144729 to 0.139626 and the value for the cut-off 2/3 changes from 0.114885 to 0.101773. For Table 6 the value for the cut-off 4/7 changes from 0.125528 to 0.122144 and the value for the cut-off 2/3 changes from 0.099488 to 0.090828. The sentence on p. 141 “E.g. for block size 4 and q = 2/3 the type I error rate is 18% (Table 4).” has to be replaced by “E.g. for block size 4 and q = 2/3 the type I error rate is 15.3% (Table 4).”. There were only minor changes smaller than 0.03. These changes do not affect the interpretation of the results or our recommendations.


Sign in / Sign up

Export Citation Format

Share Document