scholarly journals Testing an Optimally Weighted Combination of Common and/or Rare Variants with Multiple Traits

2018 ◽  
Author(s):  
Zhenchuan Wang ◽  
Qiuying Sha ◽  
Kui Zhang ◽  
Shuanglin Zhang

AbstractJoint analysis of multiple traits has recently become popular since it can increase statistical power to detect genetic variants and there is increasing evidence showing that pleiotropy is a widespread phenomenon in complex diseases. Currently, most of existing methods test the association between multiple traits and a single common variant. However, the variant-by-variant methods for common variant association studies may not be optimal for rare variant association studies due to the allelic heterogeneity as well as the extreme rarity of individual variants. In this article, we developed a statistical method by testing an optimally weighted combination of variants with multiple traits (TOWmuT) to test the association between multiple traits and a weighted combination of variants (rare and/or common) in a genomic region. TOWmuT is robust to the directions of effects of causal variants and is applicable to different types of traits. Using extensive simulation studies, we compared the performance of TOWmuT with the following five existing methods: gene association with multiple traits (GAMuT), multiple sequence kernel association test (MSKAT), adaptive weighting reverse regression (AWRR), single-TOW, and MANOVA. Our results showed that, in all of the simulation scenarios, TOWmuT has correct type I error rates and is consistently more powerful than the other five tests. We also illustrated the usefulness of TOWmuT by analyzing a whole-genome genotyping data from a lung function study.

2018 ◽  
Vol 100 ◽  
Author(s):  
LILI CHEN ◽  
YONG WANG ◽  
YAJING ZHOU

SummaryPleiotropy, the effect of one variant on multiple traits, is widespread in complex diseases. Joint analysis of multiple traits can improve statistical power to detect genetic variants and uncover the underlying genetic mechanism. Currently, a large number of existing methods target one common variant or only rare variants. Increasing evidence shows that complex diseases are caused by common and rare variants. Here we propose a region-based method to test both rare and common variant associated multiple traits based on variable reduction method (abbreviated as MULVR). However, in the presence of noise traits, the MULVR method may lose power, so we propose the MULVR-O method, which jointly analyses the optimal number of traits associated with genetic variants by the MULVR method, to guard against the effect of noise traits. Extensive simulation studies show that our proposed method (MULVR-O) is applied to not only multiple quantitative traits but also qualitative traits, and is more powerful than several other comparison methods in most scenarios. An application to the two genes (SHBG and CHRM3) and two phenotypes (systolic blood pressure and diastolic blood pressure) from the GAW19 dataset illustrates that our proposed methods (MULVR and MULVR-O) are feasible and efficient as a region-based method.


2019 ◽  
Author(s):  
Jianjun Zhang ◽  
Qiuying Sha ◽  
Guanfu Liu ◽  
Xuexia Wang

AbstractThere is increasing evidence showing that pleiotropy is a widespread phenomenon in complex diseases for which multiple correlated traits are often measured. Joint analysis of multiple traits could increase statistical power by aggregating multiple weak effects. Existing methods for multiple trait association tests usually study each of the multiple traits separately and then combine the univariate test statistics or combine p-values of the univariate tests for identifying disease associated genetic variants. However, ignoring correlation between phenotypes may cause power loss. Additionally, the genetic variants in one gene (including common and rare variants) are often viewed as a whole that affects the underlying disease since the basic functional unit of inheritance is a gene rather than a genetic variant. Thus, results from gene level association test can be more readily integrated with downstream functional and pathogenic investigation, whereas many existing methods for multiple trait association tests only focus on testing a single common variant rather than a gene. In this article, we propose a statistical method by Testing an Optimally Weighted Combination of Multiple traits (TOW-CM) to test the association between multiple traits and multiple variants in a genomic region (a gene or pathway). We investigate the performance of the proposed method through extensive simulation studies. Our simulation studies show that the proposed method has correct type I error rates and is either the most powerful test or comparable with the most powerful tests. In addition, we illustrate the usefulness of TOW-CM by analyzing a whole-genome genotyping data from a COPDGene study.


2019 ◽  
Author(s):  
Zihan Zhao ◽  
Jianjun Zhang ◽  
Qiuying Sha ◽  
Han Hao

AbstractThe risk of many complex diseases is determined by a complex interplay of genetic and environmental factors. Advanced next generation sequencing technology makes identification of gene-environment (GE) interactions for both common and rare variants possible. However, most existing methods focus on testing the main effects of common and/or rare genetic variants. There are limited methods developed to test the effects of GE interactions for rare variants only or rare and common variants simultaneously. In this study, we develop novel approaches to test the effects of GE interactions of rare and/or common risk, and/or protective variants in sequencing association studies. We propose two approaches: 1) testing the effects of an optimally weighted combination of GE interactions for rare variants (TOW-GE); 2) testing the effects of a weighted combination of GE interactions for both rare and common variants (variable weight TOW-GE, VW-TOW-GE). Extensive simulation studies based on the Genetic Analysis Workshop 17 data show that the type I error rates of the proposed methods are well controlled. Compared to the existing interaction sequence kernel association test (ISKAT), TOW-GE is more powerful when there are GE interactions’ effects for rare risk and/or protective variants; VW-TOW-GE is more powerful when there are GE interactions’ effects for both rare and common risk and protective variants. Both TOW-GE and VW-TOW-GE are robust to the directions of effects of causal GE interactions. We demonstrate the applications of TOW-GE and VW-TOW-GE using an imputed data from the COPDGene Study.


Biostatistics ◽  
2019 ◽  
Author(s):  
Jingchunzi Shi ◽  
Michael Boehnke ◽  
Seunggeun Lee

Summary Trans-ethnic meta-analysis is a powerful tool for detecting novel loci in genetic association studies. However, in the presence of heterogeneity among different populations, existing gene-/region-based rare variants meta-analysis methods may be unsatisfactory because they do not consider genetic similarity or dissimilarity among different populations. In response, we propose a score test under the modified random effects model for gene-/region-based rare variants associations. We adapt the kernel regression framework to construct the model and incorporate genetic similarities across populations into modeling the heterogeneity structure of the genetic effect coefficients. We use a resampling-based copula method to approximate asymptotic distribution of the test statistic, enabling efficient estimation of p-values. Simulation studies show that our proposed method controls type I error rates and increases power over existing approaches in the presence of heterogeneity. We illustrate our method by analyzing T2D-GENES consortium exome sequence data to explore rare variant associations with several traits.


2019 ◽  
Vol 21 (3) ◽  
pp. 753-761 ◽  
Author(s):  
Regina Brinster ◽  
Dominique Scherer ◽  
Justo Lorenzo Bermejo

Abstract Population stratification is usually corrected relying on principal component analysis (PCA) of genome-wide genotype data, even in populations considered genetically homogeneous, such as Europeans. The need to genotype only a small number of genetic variants that show large differences in allele frequency among subpopulations—so-called ancestry-informative markers (AIMs)—instead of the whole genome for stratification adjustment could represent an advantage for replication studies and candidate gene/pathway studies. Here we compare the correction performance of classical and robust principal components (PCs) with the use of AIMs selected according to four different methods: the informativeness for assignment measure ($IN$-AIMs), the combination of PCA and F-statistics, PCA-correlated measurement and the PCA weighted loadings for each genetic variant. We used real genotype data from the Population Reference Sample and The Cancer Genome Atlas to simulate European genetic association studies and to quantify type I error rate and statistical power in different case–control settings. In studies with the same numbers of cases and controls per country and control-to-case ratios reflecting actual rates of disease prevalence, no adjustment for population stratification was required. The unnecessary inclusion of the country of origin, PCs or AIMs as covariates in the regression models translated into increasing type I error rates. In studies with cases and controls from separate countries, no investigated method was able to adequately correct for population stratification. The first classical and the first two robust PCs achieved the lowest (although inflated) type I error, followed at some distance by the first eight $IN$-AIMs.


2018 ◽  
Vol 20 (6) ◽  
pp. 2055-2065 ◽  
Author(s):  
Johannes Brägelmann ◽  
Justo Lorenzo Bermejo

Abstract Technological advances and reduced costs of high-density methylation arrays have led to an increasing number of association studies on the possible relationship between human disease and epigenetic variability. DNA samples from peripheral blood or other tissue types are analyzed in epigenome-wide association studies (EWAS) to detect methylation differences related to a particular phenotype. Since information on the cell-type composition of the sample is generally not available and methylation profiles are cell-type specific, statistical methods have been developed for adjustment of cell-type heterogeneity in EWAS. In this study we systematically compared five popular adjustment methods: the factored spectrally transformed linear mixed model (FaST-LMM-EWASher), the sparse principal component analysis algorithm ReFACTor, surrogate variable analysis (SVA), independent SVA (ISVA) and an optimized version of SVA (SmartSVA). We used real data and applied a multilayered simulation framework to assess the type I error rate, the statistical power and the quality of estimated methylation differences according to major study characteristics. While all five adjustment methods improved false-positive rates compared with unadjusted analyses, FaST-LMM-EWASher resulted in the lowest type I error rate at the expense of low statistical power. SVA efficiently corrected for cell-type heterogeneity in EWAS up to 200 cases and 200 controls, but did not control type I error rates in larger studies. Results based on real data sets confirmed simulation findings with the strongest control of type I error rates by FaST-LMM-EWASher and SmartSVA. Overall, ReFACTor, ISVA and SmartSVA showed the best comparable statistical power, quality of estimated methylation differences and runtime.


2019 ◽  
Author(s):  
Jianjun Zhang ◽  
Qiuying Sha ◽  
Han Hao ◽  
Shuanglin Zhang ◽  
Xiaoyi Raymond Gao ◽  
...  

AbstractThe risk of many complex diseases is determined by a complex interplay of genetic and environmental factors. Data on multiple traits is often collected for many complex diseases in order to obtain a better understanding of the diseases. Examination of gene-environment interactions (GxEs) for multiple traits can yield valuable insights about the etiology of the disease and increase power in detecting disease associated genes. Most existing methods focus on testing gene-environment interaction (GxE) for a single trait. In this study, we develop novel approaches to test GxEs for multiple traits in sequencing association studies. We first perform transformation of multiple traits by using either principle component analysis or standardization analysis. Then, we detect the effect of GxE for each transferred phenotypic trait using novel proposed tests: testing the effect of an optimallyweighted combination of GxE (TOW-GE) and/or variable weight TOW-GE (VW-TOW-GE). Finally, we employ the Fisher’s combination test to combine the p-values of TOW-GE and/or VW-TOW-GE. Extensive simulation studies based on the Genetic Analysis Workshop 17 data show that the type I error rates of the proposed methods are well controlled. Compared to the existing interaction sequence kernel association test (ISKAT), TOW-GE is more powerful when there are only rare risk and protective variants; VW-TOW-GE is more powerful when there are both rare and common risk and protective variants. Both TOW-GE and VW-TOW-GE are robust to directions of effects of causal GxEs. Application to the COPDGene Study demonstrates that our proposed methods are very powerful.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ming-Huei Chen ◽  
Achilleas Pitsillides ◽  
Qiong Yang

AbstractRecognizing that family data provide unique advantage of identifying rare risk variants in genetic association studies, many cohorts with related samples have gone through whole genome sequencing in large initiatives such as the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. Analyzing rare variants poses challenges for binary traits in that some genotype categories may have few or no observed events, causing bias and inflation in commonly used methods. Several methods have recently been proposed to better handle rare variants while accounting for family relationship, but their performances have not been thoroughly evaluated together. Here we compare several existing approaches including SAIGE but not limited to related samples using simulations based on the Framingham Heart Study samples and genotype data from Illumina HumanExome BeadChip where rare variants are the majority. We found that logistic regression with likelihood ratio test applied to related samples was the only approach that did not have inflated type I error rates in both single variant test (SVT) and gene-based tests, followed by Firth logistic regression that had inflation in its direction insensitive gene-based test at prevalence 0.01 only, applied to either related or unrelated samples, though theoretically logistic regression and Firth logistic regression do not account for relatedness in samples. SAIGE had inflation in SVT at prevalence 0.1 or lower and the inflation was eliminated with a minor allele count filter of 5. As for power, there was no approach that outperformed others consistently among all single variant tests and gene-based tests.


2021 ◽  
Vol 12 ◽  
Author(s):  
Liwan Fu ◽  
Yuquan Wang ◽  
Tingting Li ◽  
Yue-Qing Hu

As a pivotal research tool, genome-wide association study has successfully identified numerous genetic variants underlying distinct diseases. However, these identified genetic variants only explain a small proportion of the phenotypic variation for certain diseases, suggesting that there are still more genetic signals to be detected. One of the reasons may be that one-phenotype one-variant association study is not so efficient in detecting variants of weak effects. Nowadays, it is increasingly worth noting that joint analysis of multiple phenotypes may boost the statistical power to detect pathogenic variants with weak genetic effects on complex diseases, providing more clues for their underlying biology mechanisms. So a Weighted Combination of multiple phenotypes following Hierarchical Clustering method (WCHC) is proposed for simultaneously analyzing multiple phenotypes in association studies. A series of simulations are conducted, and the results show that WCHC is either the most powerful method or comparable with the most powerful competitor in most of the simulation scenarios. Additionally, we evaluated the performance of WCHC in its application to the obesity-related phenotypes from Atherosclerosis Risk in Communities, and several associated variants are reported.


2019 ◽  
Author(s):  
Jianjun Zhang ◽  
Baolin Wu ◽  
Qiuying Sha ◽  
Shuanglin Zhang ◽  
Xuexia Wang

AbstractBoth genome-wide association study and next generation sequencing data analyses are widely employed in order to identify disease susceptible common and/or rare genetic variants in many large scale genetic studies. Rare variants generally have large effects though they are hard to detect due to their low frequency. Currently, many existing statistical methods for rare variants association studies employ a weighted combination scheme, which usually puts subjective weights or suboptimal weights based on some ad hoc assumptions (e.g. ignoring dependence between rare variants). In this study, we analytically derive optimal weights for both common and rare variants and propose a General and novel approach to Test association between an Optimally Weighted combination of variants (G-TOW) in a gene or pathway for a continuous or dichotomous trait while easily adjusting for covariates. We conduct extensive simulation studies to evaluate the performance of G-TOW. Results of the simulation studies show that G-TOW has properly controlled type I error rates and it is the most powerful test among the methods we compared, when testing effects of either both rare and common variants or rare variants only. We also illustrate the effectiveness of G-TOW using the Genetic Analysis Workshop 17 (GAW17) data. In addition, we applied G-TOW and other competitive methods to test association for schizophrenia. The G-TOW have successfully verified genes FYN and VPS39 which are associated with schizophrenia reported in existing publications. Both of these genes are missed by the weighted sum statistic (WSS) and the sequence kernel association test (SKAT). G-TOW also showed much stronger significance (p-value=0.0037) than our previously developed method named Testing the effect of an Optimally Weighted combination of variants (TOW) (p-value=0.0143) on gene FYN. FYN is a member of the protein-tyrosine kinase oncogene family that phosphorylates glutamate metabotropic receptors and ionotropic N-methyl-d-aspartate (NMDA) receptors. NMDA modulates trafficking, subcellular distribution and function. It is involved in neuronal apoptosis, brain development and synaptic transmission and lower expression, which has been observed in the platelets of schizophrenic patients compared with controls. The application for schizophrenia indicates that G-TOW is a powerful tool in genome-wide association studies.


Sign in / Sign up

Export Citation Format

Share Document