scholarly journals Bambara Groundnut Rhizobacteria Antimicrobial and Biofertilization Potential

Author(s):  
Caroline F. Ajilogba ◽  
Olubukola O. Babalola ◽  
Patrick Adebola ◽  
Rasheed Adeleke

AbstractBambara groundnut, an underutilized crop has been proved to be an indigenous crop in Africa with the potential for food security. The rhizosphere of Bambara groundnut like other legumes contains several important bacteria that have not been explored for their plant growth-promoting properties. The aim of this research was to determine the potentials of rhizobacteria from Bambara groundnut soil samples as either biofertilizer or biocontrol agents or both to help provide sustainable agriculture in Africa and globally. Analyses of Bambara groundnut rhizospheric soil samples included chemical analysis such as nitrogen content analysis using extractable inorganic nitrogen method as well as cation exchangeable capacity using ammonium acetate method. Plant growth-promoting properties of isolated rhizobacteria tested include indole acetic acid, hydrogen cyanide, phosphate solubilization, 1-aminocyclopropane-1-carboxylate and ammonia production activities using standard methods. In addition, antifungal assay dual culture method was used to analyze the biocontrol properties of the isolates. Phylogenetic analysis using 16S rRNA was also carried out on the isolates. Isolated rhizobacteria from bambara groundnut rhizosphere were cultured. All the isolates were able to produce ammonia and 1-aminocyclopropane-1-carboxylate while 4.65%, 12.28% and 27.91% produced Hydrogen cyanide, Indole acetic acid and solubilized phosphate respectively, making them important targets as biocontrol and biofertilizer agents. The growth of Fusarium graminearum was suppressed in vitro by 6.98% of the isolates. Plant growth promoting activities of rhizobacteria from bambara groundnut rhizosphere reveals that it has great potentials in food security as biofertilizer and biocontrol agent against fungal and bacterial pathogens.

2021 ◽  
Vol 9 (1) ◽  
pp. 79-84
Author(s):  
Enish Pathak ◽  
Arjun Sanjyal ◽  
Chhatra Raj Regmi ◽  
Saroj Paudel ◽  
Anima Shrestha

The deleterious effects of intensive use of chemical fertilizers and pesticides in agriculture has led to the substantial research efforts on finding the alternatives to these agrochemicals. This study was aimed to isolate Bacillus species from soil of different regions of Nepal and screen for their ability to promote plant growth directly or indirectly by testing their ability to produce plant growth hormone indole acetic acid, hydrogen cyanide, ammonia and protease as well as phosphate solubilization. Thirty nine Bacillus strains were isolated from 25 soil samples of different regions of Kathmandu and Chitwan districts of Nepal. These isolates were tested for plant growth promoting traits in vitro. Among the total isolates, about 48.7% were indole acetic acid producers, 38.4% of the isolates showed the ability to solubilize the phosphate, 71.8% were able to produce ammonia and all the isolates had the ability to produce hydrogen cyanide and protease. The isolated strains showed positive results to maximum PGPR traits and exhibited a potential to be used as alternatives to chemical fertilizers and pesticides and could be used as low-cost bio-based technology to promote plant growth in the agricultural sector.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Seun Owolabi Adebajo ◽  
Pius Olugbenga Akintokun ◽  
Emmanuel Ezaka ◽  
Abidemi Esther Ojo ◽  
Donald Uzowulu Olannye ◽  
...  

Abstract Background Environmental deterioration arising from the misuse of pesticides and chemical fertilizers in agriculture has resulted in the pursuit of eco-friendly means of growing crop. Evidence has shown that biofertilizers and biocontrol can boost soil fertility and suppress soil pathogens without compromising the safety of the environment. Hence, the study investigated the use of termitarium soil as a viable source for biofertilizer and biocontrol. Results Twenty-seven soil samples were collected from nine different mound soil (household, farm and water bodies in a sterile sample bag). Aliquots of serially diluted samples were plated on nutrient agar, plate count agar, eosin methylene blue agar and MacConkey agar plates. Isolates were identified using standard microbiological techniques. Identified isolates were screened for plant growth-promoting properties using phosphate solubilization test, potassium solubilization test and indole acetic acid production test. Activities of the plant growth-promoting bacteria were carried out using antagonism by diffusible substance method and antagonistic activity of cell-free culture filtrate of bacterial isolates against Ralstonia solanacearum and Fusarium oxysporum. Two hundred bacterial isolates were recovered from the 27 soil samples. The most predominant isolate was Bacillus spp. Out of the 200 bacterial isolates, 57 were positive for phosphate solubilization test, potassium solubilization test and indole acetic acid production test. Out of the 57 isolates, six bacterial isolates had antagonistic activities against Fusarium oxysporum, while seven bacterial isolates antagonized Ralstonia solanacearum. Conclusion The result showed that termite mound soil contains some useful bacteria that are capable of solubilizing phosphate and potassium and producing indole acetic acid which are the plant growth-promoting potentials and as well suppressing plant soil pathogen.


2020 ◽  
Vol 3 (2) ◽  
pp. 210-219
Author(s):  
Ika Agus Rini ◽  
Indah Oktaviani ◽  
Muhammad Asril ◽  
Revi Agustin ◽  
Fina Khaerunissa Frima

IAA adalah produk paling umum dari metabolisme L-triptofan yang dapat diproduksi oleh beberapa mikroorganisme. Beberapa mikroorganisme yang memiliki potensi menghasilkan IAA adalah bakteri rhizosfer pada tanaman Leguminosae, salah satunya adalah akasia. Acacia mangium, juga dikenal sebagai akasia, adalah pohon yang tumbuh cepat. Namun, akasia adalah tanaman invasif. Tanaman akasia memiliki bintil yang merupakan hasil simbiosis akar tanaman dan bakteri. Simbiosis ini dapat mempengaruhi kesuburan tanah. Banyak potensi yang dapat digali dari bakteri tanah, khususnya di rhizosfer. Tujuan dari penelitian ini adalah untuk mengisolasi dan mengidentifikasi bakteri pada rizosfer tanaman akasia yang mampu menghasilkan IAA sebagai salah satu potensi untuk kandidat PGPR (Plant Growth Promoting Rhizobacteria). Metode yang digunakan meliputi pengambilan sampel, isolasi bakteri penghasil IAA, pemurnian bakteri, identifikasi bakteri dan uji biokimia, pembuatan kurva tumbuha bakteri, dan uji isolat bakteri pelarut fosfat. Hasil isolasi bakteri rhizosfer diperoleh sebanyak 10 isolat bakteri yang memiliki karakteristik berbeda secara morfologi.  Berdasarkan hasil identifikasi bakteri berdasarkan pewarnaan Gram, bakteri tersebut masuk ke dalam genus Bacillus dan terdapat 5 isolat bakteri yang memiliki kemampuan menghasilkan IAA dan melarutkan fosfat sehingga bakteri tersebut memiliki potensi sebagai pupuk hayati.


2021 ◽  
Author(s):  
Maya R. ◽  
YUSUF AKKARA

Abstract The interaction between rhizobia and other nodule associated bacteria assist to mitigate nutrient stress in leguminous plants by fixing atmospheric nitrogen and synthesizing plant growth regulators. Beneficial effects of microbial inoculants emphasize the need for further research and their use in modern agriculture. The present work describes the isolation, identification, plant growth promoting properties and phylogenetic analysis of nodule associated bacteria from Mimosa pudica L. Isolation and characterization of nodule associated bacteria were done according to standard procedures. Molecular characterization of the isolates was performed using 16S ribosomal RNA. Plant growth promoting ability was analyzed by quantifying the levels of Indole acetic acid. Evolutionary distance and relatedness was analyzed using neighbor joining method. Rhizobium sp. CU8 and three other co-resident non-rhizobial nodule associated bacteria (Bacillus cereus MY5, Ralstonia pickettii MY1 and Lactococcus lactis MY3) exhibiting nitrogen fixation, plant growth promotion and other potential microbial activities were characterized. Phylogenetic analysis revealed the genetic relatedness and evolutionary significance of Rhizobium sp. CU8 and other co-inhabitant non-rhizobial nodule associated bacteria from M. pudica. Present study identified the four isolates as potential biofertilizers due to their nitrogen fixing and growth promoting characteristics. L. lactis MY3 is the first co-resident nitrogen fixer and plant growth promoter reported from the root nodules of M. pudica.


2016 ◽  
Vol 225 ◽  
pp. 44-45 ◽  
Author(s):  
Abdul Latif Khan ◽  
Sajjad Asaf ◽  
Abdur Rahim Khan ◽  
Ahmed Al-Harrasi ◽  
Ahmed Al-Rawahi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document