scholarly journals Strategies for vaccine design for corona virus using Immunoinformatics techniques

2020 ◽  
Author(s):  
Anamika Basu ◽  
Anasua Sarkar ◽  
Ujjwal Maulik

ABSTRACTThe cutting-edge technology vaccinomics is the combination of two topics immunogenetics and immunogenomics with the knowledge of systems biology and immune profiling for designing vaccine against infectious disease. In our present study, an epitope-based peptide vaccine against nonstructural protein 4 of beta coronavirus, using a combination of B cell and T cell epitope predictions, followed by molecular docking methods are performed. Here, protein sequences of homologous nonstructural protein 4 of beta coronavirus are collected and conserved regions present in them are investigated via phylogenetic study to determine the most immunogenic part of protein. From the identified region of the target protein, the peptide sequence IRNTTNPSAR from the region ranging from 38-47 and the sequence PTDTYTSVYLGKFRG from the positions of 76-90 are considered as the most potential B cell and T cell epitopes respectively. Furthermore, this predicted T cell epitopes PTDTYTSVY and PTDTYTSVYLGKFRG interacted with MHC allelic proteins HLA-A*01:01 and HLA-DRB5*01:01 respectively with the low IC50 values. These epitopes are perfectly fitted into the epitope binding grooves of alpha helix of MHC I molecule and MHC II molecule with binding energy scores −725.0 Kcal/mole and −786.0 Kcal/mole respectively, showing stability in MHC molecules binding. This MHC restricted epitope PTDTYTSVY also showed a good conservancy of 50.16% in world population coverage. This MHC I HLA-A*01:01 allele is present among 58.87% of Chinese population also. Therefore, the epitopes IRNTTNPSAR and PTDTYTSVYLGKFRG may be considered as potential peptides for peptide-based vaccine for coronavirus after further experimental study.

Author(s):  
Prekshi Garg ◽  
Neha Srivastava ◽  
Prachi Srivastava

SARS-CoV-2 has been the talk of the town ever since the beginning of 2020. The pandemic has brought the complete world on a halt. Every country is trying all possible steps to combat the disease ranging from shutting the complete economy of the country to repurposing of drugs and vaccine development. The rapid data analysis and widespread tools, software and databases have made bioinformatics capable of giving new insights to the researchers to deal with the current scenario more efficiently. Vaccinomics, the new emerging field of bioinformatics uses concepts of immunogenetics and immunogenomics with in silico tools to give promising results for wet lab experiments. This approach is highly validated for the designing and development of potent vaccines. The present in-silico study was attempted to identify peptide fragments from spike surface glycoprotein that can be efficiently used for the designing and development of epitope-based vaccine designing approach. Both B-cell and T-cell epitopes are predicted using integrated computational tools. VaxiJen server was used for prediction of protective antigenicity of the protein. NetCTL was studied for analyzing most potent T cell epitopes and its subsequent MHC-I interaction through tools provided by IEDB. 3D structure prediction of peptides and MHC-I alleles (HLA-C*03:03) was further done to carry out docking studies using AutoDock4.0. Various tools from IEDB were used to predict B-cell epitopes on the basis of different essential parameters like surface accessibility, beta turns and many more. Based on results interpretation, the peptide sequence from 1138-1145 amino acid and sequence WTAGAAAYY and YDPLQPEL were obtained as a potential B-cell epitope and T-cell epitope respectively. This in-silico study will help us to identify novel epitope-based peptide vaccine target in spike protein of SARS-CoV-2. Further, in-vitro and in-vivo study needed to validate the findings.


Coronaviruses ◽  
2021 ◽  
Vol 02 ◽  
Author(s):  
Prekshi Garg ◽  
Neha Srivastava ◽  
Prachi Srivastava

Background: SARS-CoV-2 has been the talk of the town ever since the beginning of 2020. Every country is trying all possible steps to combat the disease ranging from shutting the complete economy of the country to the repurposing of drugs and vaccine development. The rapid data analysis and widespread tools have made bioinformatics capable of giving new insights to deal with the current scenario more efficiently through an emerging field, Vaccinomics. Objective: The present in-silico study was attempted to identify peptide fragments from spike surface glycoprotein of SARS-CoV-2 that can be efficiently used for the development of an epitope-based vaccine designing approach. Methodology: The epitopes of B and T-cell are predicted using integrated computational tools. VaxiJen server, NetCTL, and IEDB tools were used to study, analyze, and predict potent T-cell epitopes, its subsequent MHC-I interactions, and B-cell epitopes. The 3D structure prediction of peptides and MHC-I alleles (HLA-C*03:03) was further done using AutoDock4.0. Result: Based on result interpretation, the peptide sequence from 1138-1145 amino acid and sequence WTAGAAAYY and YDPLQPEL were obtained as potential B-cell and T-cell epitopes respectively. Conclusion: The peptide sequence WTAGAAAYY and the amino acid sequence from 1138-1145 of the spike protein of SARS-CoV-2 can be used as a probable B-cell epitope candidate. Also, the amino acid sequence YDPLQPEL can be used as a potent T-cell epitope. This in-silico study will help us to identify novel epitope-based peptide vaccine targets in the spike protein of SARS-CoV-2. Further, the in-vitro and in-vivo study needed to validate the findings.


2021 ◽  
Author(s):  
Mohd Abdullah ◽  
Mohammad Kadivella ◽  
Rolee Sharma ◽  
Syed M. Faisal ◽  
Sarwar Azam

AbstractLeptospira is a zoonotic pathogen causing significant morbidity and mortality both in animals and humans. Although several surface proteins have been identified as vaccine candidate, they failed to induce sterilizing immunity and cross protection against different serovars. Thus, identification of highly immunogenic antigens that are conserved among pathogenic serovars would be first step towards development of universal vaccine for Leptospirosis. Here we used reverse vaccinology pipeline to screen core genome of pathogenic Leptospira spp.in order to identify suitable vaccine candidates. Based on properties like sub cellular localization, adhesin, homology to human proteins, antigenicity and allergenicity, 18 antigenic proteins were identified and were further investigated for immunological properties. Based on immunogenicity, Protegenicity, Antigenicity, B-cell and promiscuous T-cell epitopes, 6 Potential Vaccine Candidates (PVCs) were finally selected which covered most of the affected world population. For designing a Multi-Epitope Vaccine (MEV), 6 B-cell and 6 promiscuous MHC-I and MHC-II epitopes from each candidate were clustered with linkers in between and stitched along with a TLR4 adjuvant (APPHALS) at the N-terminal to form a construct of 361 amino acids. The physiochemical properties, secondary and tertiary structure analysis revealed that MEV was highly stable. Molecular docking analysis revealed the deep binding interactions of the MEV construct within the grooves of human TLR4 (4G8A). In-silico codon optimization and cloning of the vaccine construct assured good expression. Further, immune simulations have shown that MEV could induce strong and diverse B and T cell responses. Taken together our results indicate that the designed MEV could be a promising subunit vaccine candidate against Leptospirosis, however it requires experimental validation.


2019 ◽  
Vol 20 (S6) ◽  
Author(s):  
Monica J. Quinzo ◽  
Esther M. Lafuente ◽  
Pilar Zuluaga ◽  
Darren R. Flower ◽  
Pedro A. Reche

Abstract Background Human Cytomegalovirus (HCMV) is a ubiquitous herpesvirus affecting approximately 90% of the world population. HCMV causes disease in immunologically naive and immunosuppressed patients. The prevention, diagnosis and therapy of HCMV infection are thus crucial to public health. The availability of effective prophylactic and therapeutic treatments remain a significant challenge and no vaccine is currently available. Here, we sought to define an epitope-based vaccine against HCMV, eliciting B and T cell responses, from experimentally defined HCMV-specific epitopes. Results We selected 398 and 790 experimentally validated HCMV-specific B and T cell epitopes, respectively, from available epitope resources and apply a knowledge-based approach in combination with immunoinformatic predictions to ensemble a universal vaccine against HCMV. The T cell component consists of 6 CD8 and 6 CD4 T cell epitopes that are conserved among HCMV strains. All CD8 T cell epitopes were reported to induce cytotoxic activity, are derived from early expressed genes and are predicted to provide population protection coverage over 97%. The CD4 T cell epitopes are derived from HCMV structural proteins and provide a population protection coverage over 92%. The B cell component consists of just 3 B cell epitopes from the ectodomain of glycoproteins L and H that are highly flexible and exposed to the solvent. Conclusions We have defined a multiantigenic epitope vaccine ensemble against the HCMV that should elicit T and B cell responses in the entire population. Importantly, although we arrived to this epitope ensemble with the help of computational predictions, the actual epitopes are not predicted but are known to be immunogenic.


2020 ◽  
Author(s):  
Vidhu Agarwal ◽  
Pritish Varadwaj ◽  
Akhilesh Tiwari

AbstractThe emergence of COVID-19 as a pandemic with a high morbidity rate is posing serious global concern. There is an urgent need to design a suitable therapy or vaccine that could fight against SARS-CoV-2 infection. As spike glycoprotein of SARS-CoV-2 plays a crucial role in receptor binding and membrane fusion inside the host, it could be a suitable target for designing of an epitope-based vaccine. SARS-CoV-2 is an RNA virus and thus has a property to mutate. So, a conserved peptide region of spike glycoprotein was used for predicting suitable B cell and T cell epitopes. 4 T cell epitopes were selected based on stability, antigenicity, allergenicity and toxicity. Further, MHC-I were found from the immune database that could best interact with the selected epitopes. Population coverage analysis was also done to check the presence of identified MHC-I, in the human population of the affected countries. The T cell epitope that binds with the respective MHC-I with highest affinity was chosen. Molecular dynamic simulation results show that the epitope is well selected. This is an in-silico based study that predicts a novel T cell epitope from the conserved spike glycoprotein that could act as a target for designing of the epitope-based vaccine. Further, B cell epitopes have also been found but the main work focuses on T cell epitope as the immunity generated by it is long lasting as compared to B cell epitope.


2020 ◽  
Author(s):  
Zaira Rehman ◽  
Ammad Fahim ◽  
Muhammad Faraz Bhatti

Abstract The December of 2019 witnessed emergence of worldwide outbreak by a novel strain of coronavirus termed COVID-19 with sequence similarity of overall 96.2% with BatCoV RaTG13 (coronavirus isolated from bat) and 94% sequence identity with Severe Acute respiratory syndrome Virus (SARS-CoV) that resulted in outbreak in 2002-2003. There is no therapeutic or preventive strategy like vaccine developed so far to overcome infection.The receptor binding domain (RBD) of COVID-19 for any potential vaccine epitopes were explored. The structure of RBD of COVID-19, BatCoV RaTG13 and bACE2 were chalked through homology modeling followed by molecular docking and structural validation. A comprehensive immunoinformatics approach mapped conserved peptide sequence on COVID-19 RBD for their B-, Helper T- & Cytotoxic T-cell epitope profile. The recognized epitopes were further studied and validated for their docking interaction with MHC-I and MHC-II alleles. Through immune-informatics approaches the study identified conserved B- and T-cell epitopes in RBD. The B-cell epitopes lying within the receptor binding motif, LFRKSN and SYGFQPT l were found to be highly antigenic. Among T-cell epitopes, the epitope CVADYSVLY and FTNVYADSF were antigenic and exhibited affinity for maximum number of MHC-I alleles. The T cell epitopes YRLFRKSNL, VYAWNRKRI displayed affinity for maximum number of MHC-II alleles. The docking analysis of the epitopes with MHC proteins revealed strong interactions of T-cell epitopes with MHC-I and MHC-II alleles. The overlapping epitope among B- and T-cells was YRLFRKSNL. The deployment of these epitopes in potential vaccine against COVID-19 may help in sweeping the COVID-19 infectious spread.


Author(s):  
Wahiba Ezzemani ◽  
Marc P. Windisch ◽  
Anass Kettani ◽  
Haya Altawalah ◽  
Jalal Nourlil ◽  
...  

Background: Globally, the recent outbreak of Zika virus (ZIKV) in Brazil, Asia Pacific, and other countries highlighted the unmet medical needs. Currently, there are neither effective vaccines nor therapeutics available to prevent or treat ZIKV infection. Objective: In this study, we aimed to design an epitope-based vaccine for ZIKV using an in silico approach to predict and analyze B- and T-cell epitopes. Methods: The prediction of the most antigenic epitopes has targeted the capsid and the envelope proteins as well as nonstructural proteins NS5 and NS3 using immune-informatics tools PROTPARAM, CFSSP, PSIPRED, and Vaxijen v2.0. B and T-cell epitopes were predicted using ABCpred, IEDB, TepiTool, and their toxicity were evaluated using ToxinPred. The 3-dimensional epitope structures were generated by PEP-FOLD. Energy minimization was performed using Swiss-Pdb Viewer, and molecular docking was conducted using PatchDock and FireDock server. Results: As a result, we predicted 307 epitopes of MHCI (major histocompatibility complex class I) and 102 epitopes of MHCII (major histocompatibility complex class II). Based on immunogenicity and antigenicity scores, we identified the four most antigenic MHC I epitopes: MVLAILAFLR (HLA-A*68 :01), ETLHGTVTV (HLA-A*68 :02), DENHPYRTW (HLA-B*44 :02),QEGVFHTMW (HLA-B*44 :03) and TASGRVIEEW (HLA-B*58:01), and MHC II epitopes: IIKKFKKDLAAMLRI (HLA-DRB3*02 :02), ENSKMMLELDPPFGD (HLA-DRB3*01:01), HAETWFFDENHPYRT (HLA-DRB3*01:01), TDGVYRVMTRRLLGS (HLA-DRB1*11 :01), and DGCWYGMEIRPRKEP (HLA-DRB5*01:01). Conclusion : This study provides novel potential B cell and T cell epitopes to fight Zika virus infections and may prompt further development of vaccines against ZIKV and other emerging infectious diseases. However, further investigations for protective immune response by in vitro and in vivo studies to ratify the immunogenicity, safety of the predicted structure, and ultimately the vaccine properties to prevent ZIKV infections are warranted.


2009 ◽  
Vol 90 (10) ◽  
pp. 2513-2518 ◽  
Author(s):  
Christine S. Siegismund ◽  
Oliver Hohn ◽  
Reinhard Kurth ◽  
Stephen Norley

As a prelude to primate studies, the immunogenicity of wild-type and codon-optimized versions of simian immunodeficiency virus (SIV)agm Gag DNA, with and without co-administered granulocyte–macrophage colony-stimulating factor (GM-CSF) DNA, was directly compared in two strains of mice. Gag-specific T cells in the splenocytes of BALB/c and C57BL/6 mice immunized by gene gun were quantified by ELISpot using panels of overlapping synthetic peptides (15mers) spanning the entire capsid proteins of SIVagm, SIVmac and human immunodeficiency virus type 1. Specific antibodies were measured by ELISA. Codon optimization was shown to significantly increase the immune response to the DNA immunogens, reducing the amount of DNA necessary to induce cellular and antibody responses by one and two orders of magnitude, respectively. Co-administration of murine GM-CSF DNA was necessary for the induction of high level T- and B-cell responses. Finally, it was possible to identify both known and novel T-cell epitopes in the Gag proteins of the three viruses.


2004 ◽  
Vol 72 (12) ◽  
pp. 7360-7366 ◽  
Author(s):  
Jeffrey R. Abbott ◽  
Guy H. Palmer ◽  
Chris J. Howard ◽  
Jayne C. Hope ◽  
Wendy C. Brown

ABSTRACT Organisms in the genus Anaplasma express an immunodominant major surface protein 2 (MSP2), composed of a central hypervariable region (HVR) flanked by highly conserved regions. Throughout Anaplasma marginale infection, recombination results in the sequential appearance of novel MSP2 variants and subsequent control of rickettsemia by the immune response, leading to persistent infection. To determine whether immune evasion and selection for variant organisms is associated with a predominant response against HVR epitopes, T-cell and linear B-cell epitopes were localized by measuring peripheral blood gamma interferon-secreting cells, proliferation, and antibody binding to 27 overlapping peptides spanning MSP2 in 16 cattle. Similar numbers of MSP2-specific CD4+ T-cell epitopes eliciting responses of similar magnitude were found in conserved and hypervariable regions. T-cell epitope clusters recognized by the majority of animals were identified in the HVR (amino acids [aa] 171 to 229) and conserved regions (aa 101 to 170 and 272 to 361). In contrast, linear B-cell epitopes were concentrated in the HVR, residing within hydrophilic sequences. The pattern of recognition of epitope clusters by T cells and of HVR epitopes by B cells is consistent with the influence of protein structure on epitope recognition.


Gene ◽  
1992 ◽  
Vol 113 (1) ◽  
pp. 35-46 ◽  
Author(s):  
P. Martineau ◽  
J.-G. Guillet ◽  
C. Leclerc ◽  
M. Hofnung
Keyword(s):  
T Cell ◽  
B Cell ◽  

Sign in / Sign up

Export Citation Format

Share Document