codon optimization
Recently Published Documents


TOTAL DOCUMENTS

277
(FIVE YEARS 77)

H-INDEX

34
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Kevin McKernan ◽  
Anthony M. Kyriakopoulos ◽  
Peter McCullough

Codon optimization describes the process used to increase protein production by use of alternative but synonymous codon changes. In SARS-CoV-2 mRNA vaccines codon optimizations can result in differential secondary conformations that inevitably affect a protein’s function with significant consequences to the cell. Importantly, when codon optimization increases the GC content of synthetic mRNAs, there can be an inevitable enrichment of G-quartets which potentially form G-quadruplex structures. The emerging G-quadruplexes are favorable binding sites of RNA binding proteins like helicases that inevitably affect epigenetic reprogramming of the cell by altering transcription, translation and replication. In this study, we performed a RNAfold analysis to investigate alterations in secondary structures of mRNAs in SARS-CoV-2 vaccines due to codon optimization. We show a significant increase in the GC content of mRNAs in vaccines as compared to native SARS-CoV-2 RNA sequences encoding the spike protein. As the GC enrichment leads to more G-quadruplex structure formations, these may contribute to potential pathological processes initiated by SARS-CoV-2 molecular vaccination.


2021 ◽  
Author(s):  
Rishab Jain ◽  
Aditya Jain ◽  
Elizabeth Mauro ◽  
Kevin LeShane ◽  
Douglas Densmore

In protein sequences—as there are 61 sense codons but only 20 standard amino acids—most amino acids are encoded by more than one codon. Although such synonymous codons do not alter the encoded amino acid sequence, their selection can dramatically affect the expression of the resulting protein. Codon optimization of synthetic DNA sequences is important for heterologous expression. However, existing solutions are primarily based on choosing high-frequency codons only, neglecting the important effects of rare codons. In this paper, we propose a novel recurrent-neural-network based codon optimization tool, ICOR, that aims to learn codon usage bias on a genomic dataset of Escherichia coli. We compile a dataset of over 7,000 non-redundant, high-expression, robust genes which are used for deep learning. The model uses a bidirectional long short-term memory-based architecture, allowing for the sequential context of codon usage in genes to be learned. Our tool can predict synonymous codons for synthetic genes toward optimal expression in Escherichia coli. We demonstrate that sequential context achieved via RNN may yield codon selection that is more similar to the host genome, therefore improving protein expression more than frequency-based approaches. ICOR is evaluated on 1,481 Escherichia coli genes as well as a benchmark set of 40 select DNA sequences whose heterologous expression has been previously characterized. ICOR's performance across five metrics is compared to that of five different codon optimization techniques. The codon adaptation index -- a metric indicative of high real-world expression -- was utilized as the primary benchmark in this study. ICOR is shown to improve the codon adaptation index by 41.69% and 17.25% compared to the original and Genscript's GenSmart-optimized sequences, respectively. Our tool is provided as an open-source software package that includes the benchmark set of sequences used in this study.


2021 ◽  
Author(s):  
Zongliang Gao ◽  
Jakob Haldrup ◽  
Sujan Ravendran ◽  
Nanna S Mikkelsen ◽  
Jacob Giehm Mikkelsen ◽  
...  

Prime editing is a new CRISPR-based genome editing technology that relies on the prime editor (PE), a fusion protein of Cas9-nickase and M-MLV reverse transcriptase (RT), and a prime editing guide RNA (pegRNA) that serves both to target PE to the desired genomic locus and to carry the edit to be introduced. Here, we make advancements to the RT moiety to improve prime editing efficiencies and truncations to mitigate issues with AAV viral vector size limitations, which currently do not support efficient delivery of the large prime editing components. These efforts include RT variant screening, codon optimization, and PE truncation by removal of the RNase H domain and further trimming. This led to a codon-optimized and size-minimized PE that has an expression advantage (1.4x fold) and size advantage (621 bp shorter). In addition, we optimize the split intein PE system and identify Rma-based Cas9 split sites (573-574 and 673-674) that combined with the truncated PE delivered by dual AAVs result in superior AAV titer and prime editing efficiency. This novel minimized PE provides great value to AAV-based delivery applications in vivo.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Yide Huang ◽  
Ting Lin ◽  
Lingfang Lu ◽  
Fan Cai ◽  
Jie Lin ◽  
...  

Abstract Background Codon optimization is a common method to improve protein expression levels in Pichia pastoris and the current strategy is to replace rare codons with preferred codons to match the codon usage bias. However, codon-pair contexts have a profound effect on translation efficiency by influencing both translational elongation rates and accuracy. Until now, it remains untested whether optimized genes based on codon pair bias results in higher protein expression levels compared to codon usage bias. Results In this study, an algorithm based on dynamic programming was introduced to develop codon pair optimization (CPO) which is a software tool to provide simple and efficient codon pair optimization for synthetic gene design in Pichia pastoris. Two reporters (MT1-MMP E2C6 and ADAM17 A9B8 scFvs) were employed to test the effects of codon pair bias and CPO optimization on their protein expression levels. Four variants of MT1-MMP E2C6 and ADAM17 A9B8 for each were generated, one variant with the best codon-pair context, one with the worst codon-pair context, one with unbiased codon-pair context, and another optimized based on codon usage. The expression levels of variants with the worst codon-pair context were almost undetectable by Western blot and the variants with the best codon-pair context were expressed well. The expression levels on MT1-MMP E2C6 and ADAM17 A9B8 were more than five times and seven times higher in the optimized sequences based on codon-pair context compared to that based on codon usage, respectively. The results indicated that the codon-pair context-based codon optimization is more effective in enhancing expression of protein in Pichia pastoris. Conclusions Codon-pair context plays an important role on the protein expression in Pichia pastoris. The codon pair optimization (CPO) software developed in this study efficiently improved the protein expression levels of exogenous genes in Pichia pastoris, suggesting gene design based on codon pair bias is an alternative strategy for high expression of recombinant proteins in Pichia pastoris.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0259101
Author(s):  
Dillion M. Fox ◽  
Kim M. Branson ◽  
Ross C. Walker

Reverse translation of polypeptide sequences to expressible mRNA constructs is a NP-hard combinatorial optimization problem. Each amino acid in the protein sequence can be represented by as many as six codons, and the process of selecting the combination that maximizes probability of expression is termed codon optimization. This work investigates the potential impact of leveraging quantum computing technology for codon optimization. A Quantum Annealer (QA) is compared to a standard genetic algorithm (GA) programmed with the same objective function. The QA is found to be competitive in identifying optimal solutions. The utility of gate-based systems is also evaluated using a simulator resulting in the finding that while current generations of devices lack the hardware requirements, in terms of both qubit count and connectivity, to solve realistic problems, future generation devices may be highly efficient.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adewale Oluwaseun Fadaka ◽  
Nicole Remaliah Samantha Sibuyi ◽  
Darius Riziki Martin ◽  
Mediline Goboza ◽  
Ashwil Klein ◽  
...  

AbstractDengue poses a global health threat, which will persist without therapeutic intervention. Immunity induced by exposure to one serotype does not confer long-term protection against secondary infection with other serotypes and is potentially capable of enhancing this infection. Although vaccination is believed to induce durable and protective responses against all the dengue virus (DENV) serotypes in order to reduce the burden posed by this virus, the development of a safe and efficacious vaccine remains a challenge. Immunoinformatics and computational vaccinology have been utilized in studies of infectious diseases to provide insight into the host–pathogen interactions thus justifying their use in vaccine development. Since vaccination is the best bet to reduce the burden posed by DENV, this study is aimed at developing a multi-epitope based vaccines for dengue control. Combined approaches of reverse vaccinology and immunoinformatics were utilized to design multi-epitope based vaccine from the sequence of DENV. Specifically, BCPreds and IEDB servers were used to predict the B-cell and T-cell epitopes, respectively. Molecular docking was carried out using Schrödinger, PATCHDOCK and FIREDOCK. Codon optimization and in silico cloning were done using JCAT and SnapGene respectively. Finally, the efficiency and stability of the designed vaccines were assessed by an in silico immune simulation and molecular dynamic simulation, respectively. The predicted epitopes were prioritized using in-house criteria. Four candidate vaccines (DV-1–4) were designed using suitable adjuvant and linkers in addition to the shortlisted epitopes. The binding interactions of these vaccines against the receptors TLR-2, TLR-4, MHC-1 and MHC-2 show that these candidate vaccines perfectly fit into the binding domains of the receptors. In addition, DV-1 has a better binding energies of − 60.07, − 63.40, − 69.89 kcal/mol against MHC-1, TLR-2, and TLR-4, with respect to the other vaccines. All the designed vaccines were highly antigenic, soluble, non-allergenic, non-toxic, flexible, and topologically assessable. The immune simulation analysis showed that DV-1 may elicit specific immune response against dengue virus. Moreover, codon optimization and in silico cloning validated the expressions of all the designed vaccines in E. coli. Finally, the molecular dynamic study shows that DV-1 is stable with minimum RMSF against TLR4. Immunoinformatics tools are now applied to screen genomes of interest for possible vaccine target. The designed vaccine candidates may be further experimentally investigated as potential vaccines capable of providing definitive preventive measure against dengue virus infection.


2021 ◽  
Vol 9 (9) ◽  
pp. 1986
Author(s):  
Ethan T. Hillman ◽  
Elizabeth M. Frazier ◽  
Evan K. Shank ◽  
Adrian N. Ortiz-Velez ◽  
Jacob A. Englaender ◽  
...  

Anaerobic fungi are emerging biotechnology platforms with genomes rich in biosynthetic potential. Yet, the heterologous expression of their biosynthetic pathways has had limited success in model hosts like E. coli. We find one reason for this is that the genome composition of anaerobic fungi like P. indianae are extremely AT-biased with a particular preference for rare and semi-rare AT-rich tRNAs in E coli, which are not explicitly predicted by standard codon adaptation indices (CAI). Native P. indianae genes with these extreme biases create drastic growth defects in E. coli (up to 69% reduction in growth), which is not seen in genes from other organisms with similar CAIs. However, codon optimization rescues growth, allowing for gene evaluation. In this manner, we demonstrate that anaerobic fungal homologs such as PI.atoB are more active than S. cerevisiae homologs in a hybrid pathway, increasing the production of mevalonate up to 2.5 g/L (more than two-fold) and reducing waste carbon to acetate by ~90% under the conditions tested. This work demonstrates the bioproduction potential of anaerobic fungal enzyme homologs and how the analysis of codon utilization enables the study of otherwise difficult to express genes that have applications in biocatalysis and natural product discovery.


2021 ◽  
Author(s):  
Kärt Tomberg ◽  
Liliana Antunes ◽  
YangYang Pan ◽  
Jacob Hepkema ◽  
Dimitrios A Garyfallos ◽  
...  

The natural habitat of SARS-CoV-2 is the cytoplasm of a mammalian cell where it replicates its genome and expresses its proteins. While SARS-CoV-2 genes and hence its codons are presumably well optimized for mammalian protein translation, they have not been sequence optimized for nuclear expression. The cDNA of the Spike protein harbors over a hundred predicted splice sites and produces mostly aberrant mRNA transcripts when expressed in the nucleus. While different codon optimization strategies increase the proportion of full-length mRNA, they do not directly address the underlying splicing issue with commonly detected cryptic splicing events hindering the full expression potential. Similar splicing characteristics were also observed in other transgenes. By inserting multiple short introns throughout different transgenes, significant improvement in expression was achieved, including >7-fold increase for Spike transgene. Provision of a more natural genomic landscape offers a novel way to achieve multi-fold improvement in transgene expression.


Sign in / Sign up

Export Citation Format

Share Document