scholarly journals Designing of epitope-based vaccine from the conserved region of spike glycoprotein of SARS-CoV-2

2020 ◽  
Author(s):  
Vidhu Agarwal ◽  
Pritish Varadwaj ◽  
Akhilesh Tiwari

AbstractThe emergence of COVID-19 as a pandemic with a high morbidity rate is posing serious global concern. There is an urgent need to design a suitable therapy or vaccine that could fight against SARS-CoV-2 infection. As spike glycoprotein of SARS-CoV-2 plays a crucial role in receptor binding and membrane fusion inside the host, it could be a suitable target for designing of an epitope-based vaccine. SARS-CoV-2 is an RNA virus and thus has a property to mutate. So, a conserved peptide region of spike glycoprotein was used for predicting suitable B cell and T cell epitopes. 4 T cell epitopes were selected based on stability, antigenicity, allergenicity and toxicity. Further, MHC-I were found from the immune database that could best interact with the selected epitopes. Population coverage analysis was also done to check the presence of identified MHC-I, in the human population of the affected countries. The T cell epitope that binds with the respective MHC-I with highest affinity was chosen. Molecular dynamic simulation results show that the epitope is well selected. This is an in-silico based study that predicts a novel T cell epitope from the conserved spike glycoprotein that could act as a target for designing of the epitope-based vaccine. Further, B cell epitopes have also been found but the main work focuses on T cell epitope as the immunity generated by it is long lasting as compared to B cell epitope.

2018 ◽  
Vol 49 (4) ◽  
pp. 1600-1614 ◽  
Author(s):  
Shudong He ◽  
Jinlong Zhao ◽  
Walid Elfalleh ◽  
Mohamed Jemaà ◽  
Hanju  Sun ◽  
...  

Background/Aims: The incidence of lectin allergic disease is increasing in recent decades, and definitive treatment is still lacking. Identification of B and T-cell epitopes of allergen will be useful in understanding the allergen antibody responses as well as aiding in the development of new diagnostics and therapy regimens for lectin poisoning. In the current study, we mainly addressed these questions. Methods: Three-dimensional structure of the lectin from black turtle bean (Phaseolus vulgaris L.) was modeled using the structural template of Phytohemagglutinin from P. vulgaris (PHA-E, PDB ID: 3wcs.1.A) with high identity. The B and T-cell epitopes were screened and identified by immunoinformatics and subsequently validated by ELISA, lymphocyte proliferation and cytokine profile analyses. Results: Seven potential B-cell epitopes (B1 to B7) were identified by sequence and structure based methods, while three T-cell epitopes (T1 to T3) were identified by the predictions of binding score and inhibitory concentration. The epitope peptides were synthesized. Significant IgE binding capability was found in B-cell epitopes (B2, B5, B6 and B7) and T2 (a cryptic B-cell epitope). T1 and T2 induced significant lymphoproliferation, and the release of IL-4 and IL-5 cytokine confirmed the validity of T-cell epitope prediction. Abundant hydrophobic amino acids were found in B-cell epitope and T-cell epitope regions by amino acid analysis. Positively charged amino acids, such as His residue, might be more favored for B-cell epitope. Conclusion: The present approach can be applied for the identification of epitopes in novel allergen proteins and thus for designing diagnostics and therapies in lectin allergy.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Esther Blanco ◽  
Carolina Cubillos ◽  
Noelia Moreno ◽  
Juan Bárcena ◽  
Beatriz G. de la Torre ◽  
...  

Synthetic peptides incorporating protective B- and T-cell epitopes are candidates for new safer foot-and-mouth disease (FMD) vaccines. We have reported that dendrimeric peptides including four copies of a B-cell epitope (VP1 136 to 154) linked to a T-cell epitope (3A 21 to 35) of FMD virus (FMDV) elicit potent B- and T-cell specific responses and confer protection to viral challenge, while juxtaposition of these epitopes in a linear peptide induces less efficient responses. To assess the relevance of B-cell epitope multivalency, dendrimers bearing two (B2T) or four (B4T) copies of the B-cell epitope from type O FMDV (a widespread circulating serotype) were tested in CD1 mice and showed that multivalency is advantageous over simple B-T-epitope juxtaposition, resulting in efficient induction of neutralizing antibodies and optimal release of IFNγ. Interestingly, the bivalent B2T construction elicited similar or even better B- and T-cell specific responses than tetravalent B4T. In addition, the presence of the T-cell epitope and its orientation were shown to be critical for the immunogenicity of the linear juxtaposed monovalent peptides analyzed in parallel. Taken together, our results provide useful insights for a more accurate design of FMD subunit vaccines.


2021 ◽  
Vol 26 (5) ◽  
pp. 2901-2915
Author(s):  
SHEREEN F. ELKHOLY ◽  

The rapid outbreak of the new coronavirus SARS-COV-2 has created a major public health challenge. Immunoinformatics tools had a clear effect in tracking the genetic sequence of the virus and monitoring mutations and design vaccines that are effective enough to produce antibodies. In our study, we resorted to the emerging discipline of immunoinformatics in order to design a multi-epitope mRNA vaccine against the spike glycoprotein of SARS-CoV-2. We screened the B cell and T cell epitopes of the Spike glycoprotein. we used ABC pred server to predict B cell epitope in the spike glycoprotein sequence and we used NetMHC-4.1 server to predict the T-cell epitope. Then we selected the B cell and T cell epitopes that fulfilled the antigenicity, non-toxicity, non-allergenicity, induction of both IL4 and IFN gamma. Finally, we designed multi-epitope mRNA Vaccine construct by linking 6 B lymphocytes epitopes (BL) with 6 cytotoxic T lymphocytes epitopes (CTL) together with helper T lymphocyte (HTL) epitope up-streamed by 5’ cap and down-streamed by poly A tail. The vaccine was found to be antigenic, non-toxic, non-allergenic, capable of generating a robust immune response. Based on these parameters, this design can be considered a promising choice for a vaccine against SARS-CoV-2.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Christof C. Smith ◽  
Kelly S. Olsen ◽  
Kaylee M. Gentry ◽  
Maria Sambade ◽  
Wolfgang Beck ◽  
...  

Abstract Background Early in the pandemic, we designed a SARS-CoV-2 peptide vaccine containing epitope regions optimized for concurrent B cell, CD4+ T cell, and CD8+ T cell stimulation. The rationale for this design was to drive both humoral and cellular immunity with high specificity while avoiding undesired effects such as antibody-dependent enhancement (ADE). Methods We explored the set of computationally predicted SARS-CoV-2 HLA-I and HLA-II ligands, examining protein source, concurrent human/murine coverage, and population coverage. Beyond MHC affinity, T cell vaccine candidates were further refined by predicted immunogenicity, sequence conservation, source protein abundance, and coverage of high frequency HLA alleles. B cell epitope regions were chosen from linear epitope mapping studies of convalescent patient serum, followed by filtering for surface accessibility, sequence conservation, spatial localization near functional domains of the spike glycoprotein, and avoidance of glycosylation sites. Results From 58 initial candidates, three B cell epitope regions were identified. From 3730 (MHC-I) and 5045 (MHC-II) candidate ligands, 292 CD8+ and 284 CD4+ T cell epitopes were identified. By combining these B cell and T cell analyses, as well as a manufacturability heuristic, we proposed a set of 22 SARS-CoV-2 vaccine peptides for use in subsequent murine studies. We curated a dataset of ~ 1000 observed T cell epitopes from convalescent COVID-19 patients across eight studies, showing 8/15 recurrent epitope regions to overlap with at least one of our candidate peptides. Of the 22 candidate vaccine peptides, 16 (n = 10 T cell epitope optimized; n = 6 B cell epitope optimized) were manually selected to decrease their degree of sequence overlap and then synthesized. The immunogenicity of the synthesized vaccine peptides was validated using ELISpot and ELISA following murine vaccination. Strong T cell responses were observed in 7/10 T cell epitope optimized peptides following vaccination. Humoral responses were deficient, likely due to the unrestricted conformational space inhabited by linear vaccine peptides. Conclusions Overall, we find our selection process and vaccine formulation to be appropriate for identifying T cell epitopes and eliciting T cell responses against those epitopes. Further studies are needed to optimize prediction and induction of B cell responses, as well as study the protective capacity of predicted T and B cell epitopes.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4714
Author(s):  
Rodrigo Cañas-Arranz ◽  
Patricia de León ◽  
Sira Defaus ◽  
Elisa Torres ◽  
Mar Forner ◽  
...  

An approach based on a dendrimer display of B- and T-cell epitopes relevant for antibody induction has been shown to be effective as a foot-and-mouth disease (FMD) vaccine. B2T dendrimers combining two copies of the major FMD virus (FMDV) type O B-cell epitope (capsid proteinVP1 (140–158)) covalently linked to a heterotypic T-cell epitope from non-structural protein 3A (21–35), henceforth B2T-3A, has previously been shown to elicit high neutralizing antibody (nAb) titers and IFN-γ-producing cells in both mice and pigs. Here, we provide evidence that the B- and T-cell epitopes need to be tethered to a single molecular platform for successful T-cell help, leading to efficient nAb induction in mice. In addition, mice immunized with a non-covalent mixture of B2T-3A dendrimers containing the B-cell epitopes of FMDV types O and C induced similarly high nAb levels against both serotypes, opening the way for a multivalent vaccine platform against a variety of serologically different FMDVs. These findings are relevant for the design of vaccine strategies based on B- and T-cell epitope combinations.


Author(s):  
Prekshi Garg ◽  
Neha Srivastava ◽  
Prachi Srivastava

SARS-CoV-2 has been the talk of the town ever since the beginning of 2020. The pandemic has brought the complete world on a halt. Every country is trying all possible steps to combat the disease ranging from shutting the complete economy of the country to repurposing of drugs and vaccine development. The rapid data analysis and widespread tools, software and databases have made bioinformatics capable of giving new insights to the researchers to deal with the current scenario more efficiently. Vaccinomics, the new emerging field of bioinformatics uses concepts of immunogenetics and immunogenomics with in silico tools to give promising results for wet lab experiments. This approach is highly validated for the designing and development of potent vaccines. The present in-silico study was attempted to identify peptide fragments from spike surface glycoprotein that can be efficiently used for the designing and development of epitope-based vaccine designing approach. Both B-cell and T-cell epitopes are predicted using integrated computational tools. VaxiJen server was used for prediction of protective antigenicity of the protein. NetCTL was studied for analyzing most potent T cell epitopes and its subsequent MHC-I interaction through tools provided by IEDB. 3D structure prediction of peptides and MHC-I alleles (HLA-C*03:03) was further done to carry out docking studies using AutoDock4.0. Various tools from IEDB were used to predict B-cell epitopes on the basis of different essential parameters like surface accessibility, beta turns and many more. Based on results interpretation, the peptide sequence from 1138-1145 amino acid and sequence WTAGAAAYY and YDPLQPEL were obtained as a potential B-cell epitope and T-cell epitope respectively. This in-silico study will help us to identify novel epitope-based peptide vaccine target in spike protein of SARS-CoV-2. Further, in-vitro and in-vivo study needed to validate the findings.


2021 ◽  
Vol 11 ◽  
Author(s):  
Patricia de León ◽  
Rodrigo Cañas-Arranz ◽  
Sira Defaus ◽  
Elisa Torres ◽  
Mar Forner ◽  
...  

Dendrimeric peptide constructs based on a lysine core that comprises both B- and T-cell epitopes of foot-and-mouth disease virus (FMDV) have proven a successful strategy for the development of FMD vaccines. Specifically, B2T dendrimers displaying two copies of the major type O FMDV antigenic B-cell epitope located on the virus capsid [VP1 (140–158)], covalently linked to a heterotypic T-cell epitope from either non-structural protein 3A [3A (21–35)] or 3D [3D (56–70)], named B2T-3A and B2T-3D, respectively, elicit high levels of neutralizing antibodies (nAbs) and IFN-γ-producing cells in pigs. To assess whether the inclusion and orientation of T-3A and T-3D T-cell epitopes in a single molecule could modulate immunogenicity, dendrimers with T epitopes juxtaposed in both possible orientations, i.e., constructs B2TT-3A3D and B2TT-3D3A, were made and tested in pigs. Both dendrimers elicited high nAbs titers that broadly neutralized type O FMDVs, although B2TT-3D3A did not respond to boosting, and induced lower IgGs titers, in particular IgG2, than B2TT-3A3D. Pigs immunized with B2, a control dendrimer displaying two B-cell epitope copies and no T-cell epitope, gave no nABs, confirming T-3A and T-3D as T helper epitopes. The T-3D peptide was found to be an immunodominant, as it produced more IFN-γ expressing cells than T-3A in the in vitro recall assay. Besides, in pigs immunized with the different dendrimeric peptides, CD4+ T-cells were the major subset contributing to IFN-γ expression upon in vitro recall, and depletion of CD4+ cells from PBMCs abolished the production of this cytokine. Most CD4+IFN-γ+ cells showed a memory (CD4+2E3−) and a multifunctional phenotype, as they expressed both IFN-γ and TNF-α, suggesting that the peptides induced a potent Th1 pro-inflammatory response. Furthermore, not only the presence, but also the orientation of T-cell epitopes influenced the T-cell response, as B2TT-3D3A and B2 groups had fewer cells expressing both cytokines. These results help understand how B2T-type dendrimers triggers T-cell populations, highlighting their potential as next-generation FMD vaccines.


Coronaviruses ◽  
2021 ◽  
Vol 02 ◽  
Author(s):  
Prekshi Garg ◽  
Neha Srivastava ◽  
Prachi Srivastava

Background: SARS-CoV-2 has been the talk of the town ever since the beginning of 2020. Every country is trying all possible steps to combat the disease ranging from shutting the complete economy of the country to the repurposing of drugs and vaccine development. The rapid data analysis and widespread tools have made bioinformatics capable of giving new insights to deal with the current scenario more efficiently through an emerging field, Vaccinomics. Objective: The present in-silico study was attempted to identify peptide fragments from spike surface glycoprotein of SARS-CoV-2 that can be efficiently used for the development of an epitope-based vaccine designing approach. Methodology: The epitopes of B and T-cell are predicted using integrated computational tools. VaxiJen server, NetCTL, and IEDB tools were used to study, analyze, and predict potent T-cell epitopes, its subsequent MHC-I interactions, and B-cell epitopes. The 3D structure prediction of peptides and MHC-I alleles (HLA-C*03:03) was further done using AutoDock4.0. Result: Based on result interpretation, the peptide sequence from 1138-1145 amino acid and sequence WTAGAAAYY and YDPLQPEL were obtained as potential B-cell and T-cell epitopes respectively. Conclusion: The peptide sequence WTAGAAAYY and the amino acid sequence from 1138-1145 of the spike protein of SARS-CoV-2 can be used as a probable B-cell epitope candidate. Also, the amino acid sequence YDPLQPEL can be used as a potent T-cell epitope. This in-silico study will help us to identify novel epitope-based peptide vaccine targets in the spike protein of SARS-CoV-2. Further, the in-vitro and in-vivo study needed to validate the findings.


2018 ◽  
Vol 8 ◽  
Author(s):  
Alberto Grandi ◽  
Laura Fantappiè ◽  
Carmela Irene ◽  
Silvia Valensin ◽  
Michele Tomasi ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253918
Author(s):  
Jelena Repac ◽  
Marija Mandić ◽  
Tanja Lunić ◽  
Bojan Božić ◽  
Biljana Božić Nedeljković

Autoimmune diseases, often triggered by infection, affect ~5% of the worldwide population. Rheumatoid Arthritis (RA)–a painful condition characterized by the chronic inflammation of joints—comprises up to 20% of known autoimmune pathologies, with the tendency of increasing prevalence. Molecular mimicry is recognized as the leading mechanism underlying infection-mediated autoimmunity, which assumes sequence similarity between microbial and self-peptides driving the activation of autoreactive lymphocytes. T lymphocytes are leading immune cells in the RA-development. Therefore, deeper understanding of the capacity of microorganisms (both pathogens and commensals) to trigger autoreactive T cells is needed, calling for more systematic approaches. In the present study, we address this problem through a comprehensive immunoinformatics analysis of experimentally determined RA-related T cell epitopes against the proteomes of Bacteria, Fungi, and Viruses, to identify the scope of organisms providing homologous antigenic peptide determinants. By this, initial homology screening was complemented with de novo T cell epitope prediction and another round of homology search, to enable: i) the confirmation of homologous microbial peptides as T cell epitopes based on the predicted binding affinity to RA-related HLA polymorphisms; ii) sequence similarity inference for top de novo T cell epitope predictions to the RA-related autoantigens to reveal the robustness of RA-triggering capacity for identified (micro/myco)organisms. Our study reveals a much larger repertoire of candidate RA-triggering organisms, than previously recognized, providing insights into the underestimated role of Fungi in autoimmunity and the possibility of a more direct involvement of bacterial commensals in RA-pathology. Finally, our study pinpoints Endoplasmic reticulum chaperone BiP as the most potent (most likely mimicked) RA-related autoantigen, opening an avenue for identifying the most potent autoantigens in a variety of different autoimmune pathologies, with possible implications in the design of next-generation therapeutics aiming to induce self-tolerance by affecting highly reactive autoantigens.


Sign in / Sign up

Export Citation Format

Share Document