scholarly journals Mouse higher visual areas provide both distributed and discrete contributions to visually guided behaviors

Author(s):  
Miaomiao Jin ◽  
Lindsey L. Glickfeld

SummaryCortical parallel processing streams segregate many diverse features of a sensory scene. However, some features are distributed across streams, begging the question of whether and how such distributed representations contribute to perception. We determined the necessity of primary visual cortex (V1) and three key higher visual areas (LM, AL and PM) for perception of orientation and contrast, two features that are robustly encoded across all four areas. Suppressing V1, LM or AL decreased sensitivity for both orientation discrimination and contrast detection, consistent with a role for these areas in sensory perception. In comparison, suppressing PM selectively increased false alarm rates during contrast detection, without any effect on orientation discrimination. This effect was not retinotopically-specific, suggesting a distinct role for PM in the regulation of noise during decision-making. Thus, we find that distributed representations in the visual system can nonetheless support specialized perceptual roles for higher visual cortical areas.

2017 ◽  
Author(s):  
Li Zhaoping ◽  
Joelle Ackermann

1AbstractTwo images of random black and white dots, one for each eye, can represent object surfaces in a threedimensional scene when the dots correspond interocularly in a random dot stereogram (RDS). The spatial disparities between the corresponding dots represent depths of object surfaces. If the dots become anti-correlated such that a black dot in one monocular image corresponds to a white dot in the other, disparity-tuned neurons in the primary visual cortex (V1) respond as if their preferred disparities become non-preferred and vice versa, thereby reversing the disparity signs reported to higher visual areas. Humans have great difficulty perceiving the reversed depth, or any depth at all, in anti-correlated RDSs. We report that the reversed depth is more easily perceived when the RDSs are viewed in peripheral visual field, supporting a recently proposed central-peripheral dichotomy in mechanisms of feedback from higher to lower visual cortical areas for visual inference.


Perception ◽  
1994 ◽  
Vol 23 (10) ◽  
pp. 1197-1202 ◽  
Author(s):  
Vicki Steiner ◽  
Randolph Blake ◽  
David Rose

The motion aftereffect demonstrates the existence of direction-selective mechanisms in the visual system. However, direction-selective cells exist within many visual areas, including V1 and MT/V5. Can motion aftereffects be generated within each of these areas? In visual cortical areas beyond V1 almost all cells are binocular, whereas a smaller percentage are binocular in V1. The degree of binocularity can be revealed psychophysically by assessing interocular transfer. Interocular transfer of motion aftereffects generated from expanding, rotating, and translating dynamic random-dot patterns were therefore compared, since these stimuli should activate cells in higher visual areas selectively. Partial interocular transfer was found that was greater for expansion and rotation than for translation. The results support the involvement of higher visual areas in motion aftereffects to complex animation sequences.


2021 ◽  
Author(s):  
Yiyi Yu ◽  
Jeffrey N. Stirman ◽  
Christopher R. Dorsett ◽  
Spencer L. Smith

Mice have a constellation of higher visual areas, but their functional specializations are unclear. Here, we used a data-driven approach to examine neuronal representations of complex visual stimuli across mouse higher visual areas, measured using large field-of-view two-photon calcium imaging. Using specialized stimuli, we found higher fidelity representations of texture in area LM, compared to area AL. Complementarily, we found higher fidelity representations of motion in area AL, compared to area LM. We also observed this segregation of information in response to naturalistic videos. Finally, we explored how popular models of visual cortical neurons could produce the segregated representations of texture and motion we observed. These selective representations could aid in behaviors such as visually guided navigation.


i-Perception ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 204166952093840
Author(s):  
Li Zhaoping

Consider a gray field comprising pairs of vertically aligned dots; in each pair, one dot is white the other black. When viewed in a peripheral visual field, these pairs appear horizontally aligned. By the Central-Peripheral Dichotomy, this flip tilt illusion arises because top-down feedback from higher to lower visual cortical areas is too weak or absent in the periphery to veto confounded feedforward signals from the primary visual cortex (V1). The white and black dots in each pair activate, respectively, on and off subfields of V1 neural receptive fields. However, the sub-fields’ orientations, and the preferred orientations, of the most activated neurons are orthogonal to the dot alignment. Hence, V1 reports the flip tilt to higher visual areas. Top-down feedback vetoes such misleading reports, but only in the central visual field.


2018 ◽  
Author(s):  
Jack Waters ◽  
Eric Lee ◽  
Nathalie Gaudreault ◽  
Fiona Griffin ◽  
Jerome Lecoq ◽  
...  

ABSTRACTVisual cortex is organized into discrete sub-regions or areas that are arranged into a hierarchy and serve different functions in the processing of visual information. In our previous work, we noted that retinotopic maps of cortical visual areas differed between mice, but did not quantify these differences or determine the relative contributions of biological variation and measurement noise. Here we quantify the biological variation in the size, shape and locations of 11 visual areas in the mouse. We find that there is substantial biological variation in the sizes of visual areas, with some visual areas varying in size by two-fold across the population of mice.


2018 ◽  
Author(s):  
Leigh-Anne Dell ◽  
Giorgio M Innocenti ◽  
Claus C Hilgetag ◽  
Paul R Manger

The present study describes the ipsilateral and contralateral cortico-cortical and cortico-thalamic connectivity of the occipital visual areas 17,18, 19 and 21 in the ferret using standard anatomical tract-tracing methods. In line with previous studies of mammalian visual cortex connectivity, substantially more anterograde and retrograde label was present in the hemisphere ipsilateral to the injection site compared to the contralateral hemisphere. Ipsilateral reciprocal connectivity was the strongest within the occipital visual areas, while weaker connectivity strength was observed in the temporal, suprasylvian and parietal visual areas. Callosal connectivity tended to be strongest in the homotopic cortical areas, and revealed a similar areal distribution to that observed in the ipsilateral hemisphere, although often less widespread across cortical areas. Ipsilateral reciprocal connectivity was observed throughout the visual nuclei of the dorsal thalamus, with no contralateral connections to the visual thalamus being observed. The current study, along with previous studies of connectivity in the cat, identified the posteromedial lateral suprasylvian visual area (PMLS) as a distinct network hub external to the occipital visual areas in carnivores, implicating PMLS as a potential gateway to the parietal cortex for dorsal stream processing. These data will also contribute to the Ferretome (www.ferretome.org), a macro connectome database of the ferret brain, providing essential data for connectomics analyses and cross-species analyses of connectomes and brain connectivity matrices, as well as providing data relevant to additional studies of cortical connectivity across mammals and the evolution of cortical connectivity variation.


2019 ◽  
Author(s):  
Jorrit S Montijn ◽  
Rex G Liu ◽  
Amir Aschner ◽  
Adam Kohn ◽  
Peter E Latham ◽  
...  

AbstractIf the brain processes incoming data efficiently, information should degrade little between early and later neural processing stages, and so information in early stages should match behavioral performance. For instance, if there is enough information in a visual cortical area to determine the orientation of a grating to within 1 degree, and the code is simple enough to be read out by downstream circuits, then animals should be able to achieve that performance behaviourally. Despite over 30 years of research, it is still not known how efficient the brain is. For tasks involving a large number of neurons, the amount of information encoded by neural circuits is limited by differential correlations. Therefore, determining how much information is encoded requires quantifying the strength of differential correlations. Detecting them, however, is difficult. We report here a new method, which requires on the order of 100s of neurons and trials. This method relies on computing the alignment of the neural stimulus encoding direction, f′, with the eigenvectors of the noise covariance matrix, Σ. In the presence of strong differential correlations, f′ must be spanned by a small number of the eigenvectors with largest eigenvalues. Using simulations with a leaky-integrate-and-fire neuron model of the LGN-V1 circuit, we confirmed that this method can indeed detect differential correlations consistent with those that would limit orientation discrimination thresholds to 0.5-3 degrees. We applied this technique to V1 recordings in awake monkeys and found signatures of differential correlations, consistent with a discrimination threshold of 0.47-1.20 degrees, which is not far from typical discrimination thresholds (1-2 deg). These results suggest that, at least in macaque monkeys, V1 contains about as much information as is seen in behaviour, implying that downstream circuits are efficient at extracting the information available in V1.


2018 ◽  
Author(s):  
Arbora Resulaj ◽  
Sarah Ruediger ◽  
Shawn R. Olsen ◽  
Massimo Scanziani

AbstractVisually guided perceptual decisions involve the sequential activation of a hierarchy of cortical areas. It has been hypothesized that a brief time window of activity in each area is sufficient to enable the decision but direct measurements of this time window are lacking. To address this question, we develop a visual discrimination task in mice that depends on visual cortex and in which we precisely control the time window of visual cortical activity as the animal performs the task at different levels of difficulty. We show that threshold duration of activity in visual cortex enabling perceptual discrimination is between 40 and 80 milliseconds. During this time window the vast majority of neurons discriminating the stimulus fire one or no spikes and less than 16% fire more than two. This result establishes that the firing of the first visually evoked spikes in visual cortex is sufficient to enable a perceptual decision.


2008 ◽  
Vol 25 (1) ◽  
pp. 27-37 ◽  
Author(s):  
PAUL R. MANGER ◽  
GERHARD ENGLER ◽  
CHRISTIAN K.E. MOLL ◽  
ANDREAS K. ENGEL

The present paper describes the results of architectural and electrophysiological mapping observations of the medial bank of the suprasylvian sulcus of the ferret immediately caudal to somatosensory regions. The aim was to determine if the ferret possessed a homologous cortical area to the anteromedial lateral suprasylvian visual area (AMLS) of the domestic cat. We studied the architectural features and visuotopic organization of a region that we now consider to be a homologue to the cat AMLS. This area showed a distinct architecture and retinotopic organization. The retinotopic map was complex in nature with a bias towards representation of the lower visual field. These features indicate that the region described here as AMLS in the ferret is indeed a direct homologue of the previously described cat AMLS and forms part of a hierarchy of cortical areas processing motion in the ferret visual cortex. With the results of the present study and those of earlier studies a total of twelve cortical visual areas have been determined presently for the ferret, all of which appear to have direct homologues with visual cortical areas in the cat (which has a total of eighteen areas).


Sign in / Sign up

Export Citation Format

Share Document