scholarly journals A dynamic 6,000-year genetic history of Eurasia’s Eastern Steppe

Author(s):  
Choongwon Jeong ◽  
Ke Wang ◽  
Shevan Wilkin ◽  
William Timothy Treal Taylor ◽  
Bryan K. Miller ◽  
...  

SummaryThe Eastern Eurasian Steppe was home to historic empires of nomadic pastoralists, including the Xiongnu and the Mongols. However, little is known about the region’s population history. Here we reveal its dynamic genetic history by analyzing new genome-wide data for 214 ancient individuals spanning 6,000 years. We identify a pastoralist expansion into Mongolia ca. 3000 BCE, and by the Late Bronze Age, Mongolian populations were biogeographically structured into three distinct groups, all practicing dairy pastoralism regardless of ancestry. The Xiongnu emerged from the mixing of these populations and those from surrounding regions. By comparison, the Mongols exhibit much higher Eastern Eurasian ancestry, resembling present-day Mongolic-speaking populations. Our results illuminate the complex interplay between genetic, sociopolitical, and cultural changes on the Eastern Steppe.

2021 ◽  
Vol 7 (13) ◽  
pp. eabe4414
Author(s):  
Guido Alberto Gnecchi-Ruscone ◽  
Elmira Khussainova ◽  
Nurzhibek Kahbatkyzy ◽  
Lyazzat Musralina ◽  
Maria A. Spyrou ◽  
...  

The Scythians were a multitude of horse-warrior nomad cultures dwelling in the Eurasian steppe during the first millennium BCE. Because of the lack of first-hand written records, little is known about the origins and relations among the different cultures. To address these questions, we produced genome-wide data for 111 ancient individuals retrieved from 39 archaeological sites from the first millennia BCE and CE across the Central Asian Steppe. We uncovered major admixture events in the Late Bronze Age forming the genetic substratum for two main Iron Age gene-pools emerging around the Altai and the Urals respectively. Their demise was mirrored by new genetic turnovers, linked to the spread of the eastern nomad empires in the first centuries CE. Compared to the high genetic heterogeneity of the past, the homogenization of the present-day Kazakhs gene pool is notable, likely a result of 400 years of strict exogamous social rules.


2020 ◽  
Vol 287 (1923) ◽  
pp. 20192999 ◽  
Author(s):  
Maëva Gabrielli ◽  
Benoit Nabholz ◽  
Thibault Leroy ◽  
Borja Milá ◽  
Christophe Thébaud

The presence of congeneric taxa on the same island suggests the possibility of in situ divergence, but can also result from multiple colonizations of previously diverged lineages. Here, using genome-wide data from a large population sample, we test the hypothesis that intra-island divergence explains the occurrence of four geographical forms meeting at hybrid zones in the Reunion grey white-eye ( Zosterops borbonicus ), a species complex endemic to the small volcanic island of Reunion. Using population genomic and phylogenetic analyses, we reconstructed the population history of the different forms. We confirmed the monophyly of the complex and found that one of the lowland forms is paraphyletic and basal relative to others, a pattern highly consistent with in situ divergence. Our results suggest initial colonization of the island through the lowlands, followed by expansion into the highlands, which led to the evolution of a distinct geographical form, genetically and ecologically different from the lowland ones. Lowland forms seem to have experienced periods of geographical isolation, but they diverged from one another by sexual selection rather than niche change. Overall, low dispersal capabilities in this island bird combined with both geographical and ecological opportunities seem to explain how divergence occurred at such a small spatial scale.


2012 ◽  
Vol 22 (24) ◽  
pp. 2342-2349 ◽  
Author(s):  
Isabel Mendizabal ◽  
Oscar Lao ◽  
Urko M. Marigorta ◽  
Andreas Wollstein ◽  
Leonor Gusmão ◽  
...  

2018 ◽  
Vol 116 (2) ◽  
pp. 593-598 ◽  
Author(s):  
Lucy van Dorp ◽  
Sara Lowes ◽  
Jonathan L. Weigel ◽  
Naser Ansari-Pour ◽  
Saioa López ◽  
...  

Few phenomena have had as profound or long-lasting consequences in human history as the emergence of large-scale centralized states in the place of smaller scale and more local societies. This study examines a fundamental, and yet unexplored, consequence of state formation: its genetic legacy. We studied the genetic impact of state centralization during the formation of the eminent precolonial Kuba Kingdom of the Democratic Republic of the Congo (DRC) in the 17th century. We analyzed genome-wide data from over 690 individuals sampled from 27 different ethnic groups from the Kasai Central Province of the DRC. By comparing genetic patterns in the present-day Kuba, whose ancestors were part of the Kuba Kingdom, with those in neighboring non-Kuba groups, we show that the Kuba today are more genetically diverse and more similar to other groups in the region than expected, consistent with the historical unification of distinct subgroups during state centralization. We also found evidence of genetic mixing dating to the time of the Kingdom at its most prominent. Using this unique dataset, we characterize the genetic history of the Kasai Central Province and describe the historic late wave of migrations into the region that contributed to a Bantu-like ancestry component found across large parts of Africa today. Taken together, we show the power of genetics to evidence events of sociopolitical importance and highlight how DNA can be used to better understand the behaviors of both people and institutions in the past.


2020 ◽  
Vol 28 (8) ◽  
pp. 1111-1123 ◽  
Author(s):  
Guanglin He ◽  
Zheng Wang ◽  
Jianxin Guo ◽  
Mengge Wang ◽  
Xing Zou ◽  
...  

2013 ◽  
Vol 44 (5) ◽  
pp. 522-532 ◽  
Author(s):  
M. Siwek ◽  
D. Wragg ◽  
A. Sławińska ◽  
M. Malek ◽  
O. Hanotte ◽  
...  

Science ◽  
2019 ◽  
Vol 363 (6432) ◽  
pp. 1230-1234 ◽  
Author(s):  
Iñigo Olalde ◽  
Swapan Mallick ◽  
Nick Patterson ◽  
Nadin Rohland ◽  
Vanessa Villalba-Mouco ◽  
...  

We assembled genome-wide data from 271 ancient Iberians, of whom 176 are from the largely unsampled period after 2000 BCE, thereby providing a high-resolution time transect of the Iberian Peninsula. We document high genetic substructure between northwestern and southeastern hunter-gatherers before the spread of farming. We reveal sporadic contacts between Iberia and North Africa by ~2500 BCE and, by ~2000 BCE, the replacement of 40% of Iberia’s ancestry and nearly 100% of its Y-chromosomes by people with Steppe ancestry. We show that, in the Iron Age, Steppe ancestry had spread not only into Indo-European–speaking regions but also into non-Indo-European–speaking ones, and we reveal that present-day Basques are best described as a typical Iron Age population without the admixture events that later affected the rest of Iberia. Additionally, we document how, beginning at least in the Roman period, the ancestry of the peninsula was transformed by gene flow from North Africa and the eastern Mediterranean.


2019 ◽  
Vol 5 (9) ◽  
pp. eaaw3492 ◽  
Author(s):  
A. Raveane ◽  
S. Aneli ◽  
F. Montinaro ◽  
G. Athanasiadis ◽  
S. Barlera ◽  
...  

European populations display low genetic differentiation as the result of long-term blending of their ancient founding ancestries. However, it is unclear how the combination of ancient ancestries related to early foragers, Neolithic farmers, and Bronze Age nomadic pastoralists can explain the distribution of genetic variation across Europe. Populations in natural crossroads like the Italian peninsula are expected to recapitulate the continental diversity, but have been systematically understudied. Here, we characterize the ancestry profiles of Italian populations using a genome-wide dataset representative of modern and ancient samples from across Italy, Europe, and the rest of the world. Italian genomes capture several ancient signatures, including a non–steppe contribution derived ultimately from the Caucasus. Differences in ancestry composition, as the result of migration and admixture, have generated in Italy the largest degree of population structure detected so far in the continent, as well as shaping the amount of Neanderthal DNA in modern-day populations.


Author(s):  
Sergio M. Latorre ◽  
C. Sarai Reyes-Avila ◽  
Angus Malmgren ◽  
Joe Win ◽  
Sophien Kamoun ◽  
...  

AbstractBackgroundUnderstanding the mechanisms and timescales of plant pathogen outbreaks requires a detailed genome-scale analysis of their population history. The fungus Magnaporthe (Syn. Pyricularia) oryzae —the causal agent of blast disease of cereals— is among the most destructive plant pathogens to world agriculture and a major threat to the production of rice, wheat and other cereals. Although M. oryzae is a multihost pathogen that infects more than 50 species of cereals and grasses, all rice-infecting isolates belong to a single genetically defined lineage. Here, we combined multiple genomics datasets to reconstruct the genetic history of the rice-infecting lineage of M. oryzae based on 131 isolates from 21 countries.ResultsThe global population of the rice blast fungus consists of a diverse set of individuals and three well-defined genetic groups. Multiple population genetic tests revealed that the rice-infecting lineage of the blast fungus probably originated from a recombining diverse group in South East Asia followed by three independent clonal expansions that took place over the last ∼200 years. Patterns of allele sharing identified a subpopulation from the recombining diverse group that introgressed with one of the clonal lineages before its global expansion. Remarkably, the four genetic lineages of the rice blast fungus vary in the number and patterns of presence/absence of candidate effector genes. In particular, clonal lineages carry a reduced repertoire of effector genes compared with the diverse group, and specific combinations of effector presence/absence define each of the pandemic clonal lineages.ConclusionsOur analyses reconstruct the genetic history of the rice-infecting lineage of M. oryzae revealing three clonal lineages associated with rice blast pandemics. Each of these lineages displays a specific pattern of presence/absence of effector genes that may have shaped their adaptation to the rice host and their evolutionary history.


2014 ◽  
Author(s):  
Joseph Pickrell ◽  
David Reich

Genetic information contains a record of the history of our species, and technological advances have transformed our ability to access this record. Many studies have used genome-wide data from populations today to learn about the peopling of the globe and subsequent adaptation to local conditions. Implicit in this research is the assumption that the geographic locations of people today are informative about the geographic locations of their ancestors in the distant past. However, it is now clear that long-range migration, admixture and population replacement have been the rule rather than the exception in human history. In light of this, we argue that it is time to critically re-evaluate current views of the peopling of the globe and the importance of natural selection in determining the geographic distribution of phenotypes. We specifically highlight the transformative potential of ancient DNA. By accessing the genetic make-up of populations living at archaeologically-known times and places, ancient DNA makes it possible to directly track migrations and responses to natural selection.


Sign in / Sign up

Export Citation Format

Share Document