scholarly journals Resolving fate and transcriptome of hematopoietic stem cell clones

Author(s):  
Weike Pei ◽  
Fuwei Shang ◽  
Xi Wang ◽  
Ann-Kathrin Fanti ◽  
Alessandro Greco ◽  
...  

AbstractAdult bone marrow harbors a mosaic of hematopoietic stem cell (HSC) clones of embryonic origin, and recent work suggests that such clones may have coherent lineage fates. To probe under physiological conditions whether HSC clones with different fates are transcriptionally distinct, we developed PolyloxExpress – a Cre recombinase-dependent DNA substrate for in situ barcoding that allows parallel readout of barcodes and transcriptomes in single cells. We describe differentiation-inactive, multilineage and lineage-restricted HSC clones, find that they reside in distinct regions of the transcriptional landscape of hematopoiesis, and identify corresponding gene signatures. All clone types contain proliferating HSCs, indicating that differentiation-inactive HSCs can undergo symmetric self-renewal. Our work establishes an approach for studying determinants of stem cell fate in vivo and provides molecular evidence for fate coherence of HSC clones.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1720-1720
Author(s):  
Brad Dykstra ◽  
David Kent ◽  
Lindsay McCaffrey ◽  
Kristin Lyons ◽  
Merete Kristiansen ◽  
...  

Abstract Assessments of hematopoietic stem cell (HSC) repopulating activity in vivo have historically relied on calculated average longterm (12–16 wk) progeny outputs using non-purified transplants, thereby precluding definitive clonal assignments of donor-derived cells. Viral marking circumvents this problem, but has not been used for large scale surveys. Heterogeneity observed in the repopulation patterns has generally been inferred to reflect stochastic processes. We now report the in vivo repopulation kinetics of 89 individual longterm repopulating cells (LTRCs) before (n=49) and after (n=40) 4 days of clonal growth in vitro. LTRCs were defined here as cells whose WBC progeny could be detected at levels of ≥1% for at least 16 wk in sublethally irradiated Ly5-congenic W41/W41 hosts. Recipients were transplanted with either freshly isolated, single lin−Rho−SP LTRCs or 4-day clones generated from similar cells in serum-free cultures (+ 300 ng/ml SF, 20 ng/ml IL-11 & 1ng/ml Flt3-L). 4, 8, 12, 16, and 24 wk post-transplant, blood samples were stained for donor-derived B, T, and myeloid cells using a procedure that identifies donor/recipient doublets and Ly6g/Mac1low cells (which have features of lymphoid rather than myeloid WBCs) to exclude false-positive myeloid events. Four distinct patterns of repopulation were revealed. Type 1 showed a delayed production of predominantly myeloid WBCs (low or undetectable before 12 wk) that increased progressively (reaching 0.4–15% of all WBCs by 16 wk). Type 2 showed a robust multilineage repopulation that remained stable or increased over time (6–84% of all WBCs at 16 wk). Type 3 also showed an initially robust pattern of multilineage repopulation (peak numbers of WBCs at 8–12 wk and 1–51% at 16 wk), but the contribution of donor-derived myeloid cells was transient (<0.5% by 16 wk). Type 4 showed a lymphoid-restricted pattern (myeloid contribution <0.5% at all time points), with repopulation levels peaking at 8 wk and decreasing thereafter (1–22% at 16 wk). Persisting granulopoiesis, indicated by a high proportion of donor-derived cells in the Ly6g/Mac1+SSChi population at 16–24 wk, clearly distinguished the type 1 and 2 patterns from types 3 and 4 which showed near or complete cessation of donor-derived granulopoiesis beyond 12 wk. Preliminary secondary transplant experiments show that donor-derived LTRCs (with and without longterm granulopoietic activity) were exclusively generated in primary recipients with type 1 and 2 repopulation patterns. Amongst the freshly isolated LTRCs, 18% (9/49) were type 1, 41% (20/49) were type 2, 22% (11/49) were type 3, and 18% (9/49) were type 4. In contrast, 4-day clones derived from cells of the same phenotype and containing LTRC activity showed a marked decrease in type 1 and type 2 activity with a corresponding increase in type 3 and type 4 activity: type 1 = 5% (2/41), type 2 = 18% (7/40), type 3 = 28% (11/40) and type 4 = 50% (20/40). Collectively, these data identify a new hierarchy of four biologically discrete states within the compartment of cells currently defined as LTRCs. Proliferation of LTRCs either in vitro or in vivo appears to induce an irreversible transition from one state to another (from Type 1 to 2 to 3 to 4), suggesting the existence of intrinsic molecular correlates for each of these states and specific mechanisms that underlie their sequential appearance.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4327-4327
Author(s):  
Nicola Vannini ◽  
Mukul Girotra ◽  
Olaia M. Naveiras ◽  
Vasco Campos ◽  
Evan Williams ◽  
...  

Abstract A tight control of hematopoietic stem cell (HSC) quiescence, self-renewal and differentiation is crucial for lifelong blood production. The mechanisms behind this control are still poorly understood. Here we show that mitochondrial activity determines HSC fate decisions. A low mitochondrial membrane potential (Δψm) predicts long-term multi-lineage blood reconstitution capability, as we show for freshly isolated and in vitro-cultured HSCs. However, as in vivo both quiescent and cycling HSCs have comparable Δψm distributions, a low Δψm is not per se related to quiescence but is also found in dividing cells. Indeed, using divisional tracking, we demonstrate that daughter HSCs with a low Δψm maintain stemness, whereas daughter cells with high Δψm have undergone differentiation. Strikingly, lowering the Δψm by chemical uncoupling of the electron transport chain leads to HSC self-renewal under culture conditions that normally induce rapid differentiation. Taken together, these data show that mitochondrial activity and fate choice are causally related in HSCs, and provides a novel method for identifying HSC potential after in vitro culture. Disclosures No relevant conflicts of interest to declare.


EMBO Reports ◽  
2018 ◽  
Vol 19 (8) ◽  
Author(s):  
Lisa Nguyen ◽  
Zheng Wang ◽  
Adnan Y Chowdhury ◽  
Elizabeth Chu ◽  
Jiya Eerdeng ◽  
...  

1992 ◽  
Vol 47 (9) ◽  
pp. 1324-1332 ◽  
Author(s):  
Jens Freund ◽  
Afroditi Kapurniotu ◽  
Tadeusz A. Holak ◽  
Maryse Lenfant ◽  
Wolfgang Voelter

The solid phase synthesis of the inhibitor of hematopoietic stem cell proliferation, Ac–Ser–Asp–Lys–Pro–OH, and its derivative Ac–Ala–Asp–Lys–Pro–OH is described. 1H and 13C NMR investigations demonstrate that both peptides show no prefered conformation in water solution. Both peptides exist in a Pro-cis-trans equilibrium ratio of 9 (trans) : 1 (cis). Thymosin β4 is believed to be the precursor molecule of the tetrapeptide Ac–SDKP. The attachement of the random coil tetrapeptide to a rigid helical fragment could facilitate its in vivo enzymatic cleavage.


2008 ◽  
Vol 15 (4) ◽  
pp. 319-325 ◽  
Author(s):  
Clint Campbell ◽  
Ruth M Risueno ◽  
Simona Salati ◽  
Borhane Guezguez ◽  
Mickie Bhatia

Blood ◽  
1999 ◽  
Vol 94 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Laura S. Haneline ◽  
Troy A. Gobbett ◽  
Rema Ramani ◽  
Madeleine Carreau ◽  
Manuel Buchwald ◽  
...  

Fanconi anemia (FA) is a complex genetic disorder characterized by progressive bone marrow (BM) aplasia, chromosomal instability, and acquisition of malignancies, particularly myeloid leukemia. We used a murine model containing a disruption of the murine homologue ofFANCC (FancC) to evaluate short- and long-term multilineage repopulating ability of FancC −/− cells in vivo. Competitive repopulation assays were conducted where “test”FancC −/− or FancC +/+ BM cells (expressing CD45.2) were cotransplanted with congenic competitor cells (expressing CD45.1) into irradiated mice. In two independent experiments, we determined that FancC −/− BM cells have a profound decrease in short-term, as well as long-term, multilineage repopulating ability. To determine quantitatively the relative production of progeny cells by each test cell population, we calculated test cell contribution to chimerism as compared with 1 × 105 competitor cells. We determined that FancC −/− cells have a 7-fold to 12-fold decrease in repopulating ability compared with FancC +/+cells. These data indicate that loss of FancC function results in reduced in vivo repopulating ability of pluripotential hematopoietic stem cells, which may play a role in the development of the BM failure in FA patients. This model system provides a powerful tool for evaluation of experimental therapeutics on hematopoietic stem cell function.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 12-12
Author(s):  
Nan Wang ◽  
Jing Yin ◽  
Na You ◽  
Dan Guo ◽  
Yangyang Zhao ◽  
...  

The mitochondria of hematopoietic stem cell (HSC) play crucial roles in regulating cell fate and in preserving HSC functionality and survival. However, the mechanism underlying its regulation remain poorly understood. Here, we identify transcription factor TWIST1 as a novel regulator of HSC maintenance through modulating mitochondrial function. We demonstrate that Twist1 deletion results in a significantly decreased long-term HSC (LT-HSC) frequency, markedly reduced dormancy and self-renewal capacities and skewed myeloid differentiation in steady-state hematopoiesis. Twist1-deficient LT-HSC are more compromised in tolerance of irradiation and 5 fluorouracil-induced stresses, and exhibit typical phenotypes of senescence and higher levels of DNA damage and apoptosis. Mechanistically, Twist1 deficiency upregulates the expression of voltage-gated calcium channel Cacna1b in HSC, leading to noticeable increases in mitochondrial calcium levels, biogenesis, metabolic activity and reactive oxygen species production. Suppression of voltage-gated calcium channel by a calcium channel blocker largely rescues the phenotypic and functional defects in Twist1-deleted HSCs under both steady-state and stress conditions. Collectively, our data, for the first time, characterize TWIST1 as a critical regulator of HSC function acting through CACNA1B/Ca2+/mitochondria axis, and highlight the importance of Ca2+ in HSC maintenance. These observations provide new insights into the mechanisms for the control of HSC fate. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document