scholarly journals Molecular Docking Analysis Of Some Phytochemicals On Two SARS-CoV-2 Targets: Potential Lead Compounds Against Two Target Sites of SARS-CoV-2 Obtained from Plants

Author(s):  
Amaka Ubani ◽  
Francis Agwom ◽  
Oluwatoyin RuthMorenikeji ◽  
Shehu Nathan ◽  
Pam Luka ◽  
...  

AbstractCOV spike (S) glycoprotein and Mpro are two key targets that have been identified for vaccines and drug development against the COVID-19 disease. Virtual screening of some compounds of plants origin that have shown antiviral activities were carried out on the two targets, 6lu7 and 6vsb by docking with the PyRx software. The binding affinities were compared with other compounds and drugs already identified as potential ligands for 6lu7 and 6vsb as well as Chloroquine and hydroxychloroquine. The docked compounds with best binding affinities were also filtered for drug likeness using the SwissADME and PROTOX platforms on the basis of Physicochemical properties and toxicity respectively. The docking results revealed that scopodulcic acid and dammarenolic acid had the best binding affinity on the s-glycoprotein and Mpro protein targets respectively. Silybinin also demonstrated a good binding affinity to both protein targets making it a potential candidate for further evaluation as repurposed candidate for SARS COV2 with likelihood of having a multitarget activity.

F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 1157
Author(s):  
Amaka Ubani ◽  
Francis Agwom ◽  
Oluwatoyin Ruth Morenikeji ◽  
Nathan Yakubu Shehu ◽  
Emmanuel Arinze Umera ◽  
...  

Background: The coronavirus spike (S) glycoprotein and M protease are two key targets that have been identified for vaccines and drug development against COVID-19. Methods: Virtual screening of some compounds of plant origin that have shown antiviral activities were carried out on the two targets, the M protease (PDB ID 6LU7) and S glycoprotein (PDB ID 6VSB), by docking with PyRx software. The binding affinities were compared with other compounds and drugs already identified as potential ligands for the M protease and S glycoprotein, as well as chloroquine and hydroxychloroquine. The docked compounds with best binding affinities were also filtered for drug likeness using the SwissADME and PROTOX platforms on the basis of physicochemical properties and toxicity, respectively. Results: The docking results revealed that scopadulcic acid and dammarenolic acid had the best binding affinity for the S glycoprotein and Mpro protein targets, respectively. Silybinin, through molecular docking, also demonstrated good binding affinity for both protein targets making it a potential candidate for further evaluation as repurposed candidate for SARS-CoV-2, with likelihood of having multitarget activity as it showed activities for both targets. Conclusions: The study proposes that scopadulcic acid and dammarenolic acid be further evaluated in vivo for drug formulation against SARS-COV-2 and possible repurposing of Silybinin for the management of COVIV-19.


Author(s):  
Yustinus Maladan ◽  
Hana Krismawati ◽  
Tri Wahyuni ◽  
Hotma Martogi Lorensi Hutapea ◽  
Muhammad Fajri Rokhmad ◽  
...  

Leprosy persists to be a health problem in Indonesia, especially in the provinces of North Maluku, West Papua and Papua. Early diagnosis and complete treatment with multidrug therapy (MDT) remain the key strategy for reducing the disease burden. One of the major components of MDT is rifampicin which in certain cases in several countries, M. leprae resistance to this drug issue has been reported albeit only a few. This research aimed to detect and analyze polymorphism in M. leprae rpoB gene that was isolated from leprosy patients in three provinces: North Maluku Province, West Papua Province and Papua Province, Indonesia. The identification of mutations in the M. leprae rpoB gene was carried out by aligning the results of DNA sequencing with the reference strain. The 3D structure of rpoB was derived using the Swiss Model. The T450A, S456L, and H451Y variants of RNA Polymerase B subunits were constructed using FoldX based on the wild-type structure. The structures were repaired, and protein stability was evaluated using foldX under the Yasara viewer. The QC of the rpoB M. leprae homology models was conducted with Ramachandran Plot modeling using PROCHECK. The difference in binding affinity between native protein and T450A, S456L, and H45I variants were analyzed using molecular docking. rpoB gene of M. leprae contains a mutation found in nucleotide of 1348 bp. The mutation triggered the conversion of the amino acid Threonine to Alanine in the amino acid to 450 rpoB subunit B. The structure of 3D RNA Polymerase Subunit B was constructed using rpoB Mycobacterium tuberculosis with PDB code 5UH5 as template. According to Ramachandran Plot, the percentage of residues in the most favored regions are 91.9%, and there was no significant number of residues in the disallowed regions. The results of molecular docking showed that the T450A variant had the same binding affinity with the native protein which was -8.9 kcal. Binding affinity on the S456L and H451Y variants increased by -7.3 kcal and -8.2 kcal, respectively. According to Molecular Docking analysis, T450A variant did not affect the energy binding between RNA polymerase and rifampicin.


2019 ◽  
Vol 15 (4) ◽  
pp. 233-239
Author(s):  
Afaf S. Alwabli ◽  
◽  
Sana G. Alattas ◽  
Alawiah M. Alhebshi ◽  
Nidal M. Zabermawi ◽  
...  

2021 ◽  
Vol 17 (5) ◽  
pp. 557-567
Author(s):  
Mallikarjun S Beelagi ◽  

Acute bronchitis is a lower respiratory tract lung infection that causes bronchial inflammation. The known protein drug targets are peptidoglycan D, Dtranspeptidase, and DNA topoisomerase 4 subunit A for bronchitis linked infections. These are the membrane associated macromolecules which takes a major role in the formation of cell wall membrane by synthesising the cross-linked peptidoglycan. Therefore, it is of interest to design molecules with improved binding features with these protein targets. Hence, we document the molecular docking analysis data of four phytocompounds from Acacia farnesiana having optimal binding features with these targets linked to bronchitis for further consideration.


2008 ◽  
Vol 51 (19) ◽  
pp. 6085-6094 ◽  
Author(s):  
Reyes Aranda ◽  
Karen Villalba ◽  
Enrique Raviña ◽  
Christian F. Masaguer ◽  
José Brea ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1162 ◽  
Author(s):  
Cheng-Yao Yang ◽  
Yung-Li Hung ◽  
Kai-Wei Tang ◽  
Shu-Chi Wang ◽  
Chih-Hua Tseng ◽  
...  

We describe herein the preparation of certain 2-substituted 3-arylquinoline derivatives and the evaluation of their anti-inflammatory effects in LPS-activated murine J774A.1 macrophage cells. Among these newly synthesized 2-substituted 3-arylquinoline derivatives, 2-(4-methoxy- benzoyl)-3-(3,4,5-trimethoxyphenyl)quinoline (18a) and 2-(4-fluorobenzoyl)-3-(3,4,5-trimethoxy- phenyl)quinoline (18b) are two of the most active compounds which can inhibit the production of NO at non-cytotoxic concentrations. Our results have also indicated that compounds 18a and 18b significantly decrease the secretion of pro-inflammatory cytokines (TNF-á and IL-6), inhibit the expression of iNOS, suppress the phosphorylation of MAPKs, and attenuate the activity of NF-êB by LPS-activated macrophages. Through molecular docking analysis, we found that 18b could fit into the middle of the TNF-á dimer and form hydrophobic interactions with Leu55, Leu57 chain A and B, Tyr59, Val123 chain B and D, Ile 155. These results suggest that both 18a and 18b are potential lead compounds in inhibiting LPS-induced inflammatory responses. Further structural optimization to discover novel anti-inflammatory agents is ongoing.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2981
Author(s):  
Erman Salih Istifli

The aim of this study was to investigate the chemical composition, antioxidant and enzyme inhibitory activities of methanol (MeOH) extracts from Onosma bourgaei (Boiss.) and O. trachytricha (Boiss.). In addition, the interactions between phytochemicals found in extracts in high amounts and the target enzymes in question were revealed at the molecular scale by performing in silico molecular docking simulations. While the total amount of flavonoid compounds was higher in O. bourgaei, O. trachytricha was richer in phenolics. Chromatographic analysis showed that the major compounds of the extracts were luteolin 7-glucoside, apigenin 7-glucoside and rosmarinic acid. With the exception of the ferrous ion chelating assay, O. trachytricha exhibited higher antioxidant activity than O. bourgaei. O. bourgaei exhibited also slightly higher activity on digestive enzymes. The inhibitory activities of the Onosma species on tyrosinase were almost equal. In addition, the inhibitory activities of the extracts on acetylcholinesterase (AChE) were stronger than the activity on butyrylcholinesterase (BChE). Molecular docking simulations revealed that luteolin 7-glucoside and apigenin 7-glucoside have particularly strong binding affinities against ChEs, tyrosinase, α-amylase and α-glucosidase when compared with co-crystallized inhibitors. Therefore, it was concluded that the compounds in question could act as effective inhibitors on cholinesterases, tyrosinase and digestive enzymes.


Sign in / Sign up

Export Citation Format

Share Document