scholarly journals Recurrent processing drives experience-dependent plasticity for perceptual decisions

2020 ◽  
Author(s):  
Ke Jia ◽  
Elisa Zamboni ◽  
Valentin Kemper ◽  
Catarina Rua ◽  
Nuno Reis Goncalves ◽  
...  

AbstractLearning and experience are critical for translating ambiguous sensory information from our environments to perceptual decisions. Yet, evidence on how training molds the adult human brain remains controversial, as fMRI at standard resolution does not allow us to discern the finer-scale mechanisms that underlie sensory plasticity. Here, we combine ultra-high field (7T) functional imaging at sub-millimetre resolution with orientation discrimination training to interrogate experience-dependent plasticity across cortical depths. Our results provide evidence for recurrent plasticity, by contrast to sensory encoding vs. feedback mechanisms. We demonstrate that learning alters orientation-specific representations in superficial rather than middle V1 layers, suggesting changes in read-out rather than input signals. Further, learning increases feedforward rather than feedback layer-to-layer connectivity in occipito-parietal regions, suggesting that sensory plasticity gates perceptual decisions. Our findings propose finer-scale plasticity mechanisms that re-weight sensory signals to inform improved decisions, bridging the gap between micro- and macro-circuits of experience-dependent plasticity.

2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Nicolo’ Bruschi ◽  
Giacomo Boffa ◽  
Matilde Inglese

Abstract Magnetic resonance imaging (MRI) is essential for the early diagnosis of multiple sclerosis (MS), for investigating the disease pathophysiology, and for discriminating MS from other neurological diseases. Ultra-high-field strength (7-T) MRI provides a new tool for studying MS and other demyelinating diseases both in research and in clinical settings. We present an overview of 7-T MRI application in MS focusing on increased sensitivity and specificity for lesion detection and characterisation in the brain and spinal cord, central vein sign identification, and leptomeningeal enhancement detection. We also discuss the role of 7-T MRI in improving our understanding of MS pathophysiology with the aid of metabolic imaging. In addition, we present 7-T MRI applications in other demyelinating diseases. 7-T MRI allows better detection of the anatomical, pathological, and functional features of MS, thus improving our understanding of MS pathology in vivo. 7-T MRI also represents a potential tool for earlier and more accurate diagnosis.


2020 ◽  
Vol 16 (S5) ◽  
Author(s):  
Alexa Haeger ◽  
Arthur Coste ◽  
Cécile Lerman‐Rabrait ◽  
Julien Lagarde ◽  
Jörg B. Schulz ◽  
...  

Neurology ◽  
2011 ◽  
Vol 76 (6) ◽  
pp. 534-539 ◽  
Author(s):  
E. C. Tallantyre ◽  
J. E. Dixon ◽  
I. Donaldson ◽  
T. Owens ◽  
P. S. Morgan ◽  
...  

2014 ◽  
Vol 13 (12) ◽  
pp. 3698-3708 ◽  
Author(s):  
Richard Alexander Scheltema ◽  
Jan-Peter Hauschild ◽  
Oliver Lange ◽  
Daniel Hornburg ◽  
Eduard Denisov ◽  
...  

2021 ◽  
Vol 85 (6) ◽  
pp. 3522-3530
Author(s):  
Bei Zhang ◽  
Gregor Adriany ◽  
Lance Delabarre ◽  
Jerahmie Radder ◽  
Russell Lagore ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document