scholarly journals MpsLDA-ProSVM: predicting multi-label protein subcellular localization by wMLDAe dimensionality reduction and ProSVM classifier

2020 ◽  
Author(s):  
Qi Zhang ◽  
Shan Li ◽  
Bin Yu ◽  
Yang Li ◽  
Yandan Zhang ◽  
...  

ABSTRACTProteins play a significant part in life processes such as cell growth, development, and reproduction. Exploring protein subcellular localization (SCL) is a direct way to better understand the function of proteins in cells. Studies have found that more and more proteins belong to multiple subcellular locations, and these proteins are called multi-label proteins. They not only play a key role in cell life activities, but also play an indispensable role in medicine and drug development. This article first presents a new prediction model, MpsLDA-ProSVM, to predict the SCL of multi-label proteins. Firstly, the physical and chemical information, evolution information, sequence information and annotation information of protein sequences are fused. Then, for the first time, use a weighted multi-label linear discriminant analysis framework based on entropy weight form (wMLDAe) to refine and purify features, reduce the difficulty of learning. Finally, input the optimal feature subset into the multi-label learning with label-specific features (LIFT) and multi-label k-nearest neighbor (ML-KNN) algorithms to obtain a synthetic ranking of relevant labels, and then use Prediction and Relevance Ordering based SVM (ProSVM) classifier to predict the SCLs. This method can rank and classify related tags at the same time, which greatly improves the efficiency of the model. Tested by jackknife method, the overall actual accuracy (OAA) on virus, plant, Gram-positive bacteria and Gram-negative bacteria datasets are 98.06%, 98.97%, 99.81% and 98.49%, which are 0.56%-9.16%, 5.37%-30.87%, 3.51%-6.91% and 3.99%-8.59% higher than other advanced methods respectively. The source codes and datasets are available at https://github.com/QUST-AIBBDRC/MpsLDA-ProSVM/.

2013 ◽  
Vol 765-767 ◽  
pp. 3099-3103 ◽  
Author(s):  
Ze Yue Wu ◽  
Yue Hui Chen

Protein subcellular localization is an important research field of bioinformatics. In this paper, we use the algorithm of the increment of diversity combined with weighted K nearest neighbor to predict protein in SNL6 which has six subcelluar localizations and SNL9 which has nine subcelluar localizations. We use the increment of diversity to extract diversity finite coefficient as new features of proteins. And the basic classifier is weighted K-nearest neighbor. The prediction ability was evaluated by 5-jackknife cross-validation. Its predicted result is 83.3% for SNL6 and 87.6 % for SNL9. By comparing its results with other methods, it indicates the new approach is feasible and effective.


2020 ◽  
Vol 15 (6) ◽  
pp. 554-562
Author(s):  
Xiao-Fei Yang ◽  
Yuan-Ke Zhou ◽  
Lin Zhang ◽  
Yang Gao ◽  
Pu-Feng Du

Background: Long non-coding RNAs (lncRNAs) are transcripts with a length more than 200 nucleotides, functioning in the regulation of gene expression. More evidence has shown that the biological functions of lncRNAs are intimately related to their subcellular localizations. Therefore, it is very important to confirm the lncRNA subcellular localization. Methods: In this paper, we proposed a novel method to predict the subcellular localization of lncRNAs. To more comprehensively utilize lncRNA sequence information, we exploited both kmer nucleotide composition and sequence order correlated factors of lncRNA to formulate lncRNA sequences. Meanwhile, a feature selection technique which was based on the Analysis Of Variance (ANOVA) was applied to obtain the optimal feature subset. Finally, we used the support vector machine (SVM) to perform the prediction. Results: The AUC value of the proposed method can reach 0.9695, which indicated the proposed predictor is an efficient and reliable tool for determining lncRNA subcellular localization. Furthermore, the predictor can reach the maximum overall accuracy of 90.37% in leave-one-out cross validation, which clearly outperforms the existing state-of- the-art method. Conclusion: It is demonstrated that the proposed predictor is feasible and powerful for the prediction of lncRNA subcellular. To facilitate subsequent genetic sequence research, we shared the source code at https://github.com/NicoleYXF/lncRNA.


2019 ◽  
Vol 24 (34) ◽  
pp. 4013-4022 ◽  
Author(s):  
Xiang Cheng ◽  
Xuan Xiao ◽  
Kuo-Chen Chou

Knowledge of protein subcellular localization is vitally important for both basic research and drug development. With the avalanche of protein sequences emerging in the post-genomic age, it is highly desired to develop computational tools for timely and effectively identifying their subcellular localization based on the sequence information alone. Recently, a predictor called “pLoc-mPlant” was developed for identifying the subcellular localization of plant proteins. Its performance is overwhelmingly better than that of the other predictors for the same purpose, particularly in dealing with multi-label systems in which some proteins, called “multiplex proteins”, may simultaneously occur in two or more subcellular locations. Although it is indeed a very powerful predictor, more efforts are definitely needed to further improve it. This is because pLoc-mPlant was trained by an extremely skewed dataset in which some subsets (i.e., the protein numbers for some subcellular locations) were more than 10 times larger than the others. Accordingly, it cannot avoid the biased consequence caused by such an uneven training dataset. To overcome such biased consequence, we have developed a new and bias-free predictor called pLoc_bal-mPlant by balancing the training dataset. Cross-validation tests on exactly the same experimentconfirmed dataset have indicated that the proposed new predictor is remarkably superior to pLoc-mPlant, the existing state-of-the-art predictor in identifying the subcellular localization of plant proteins. To maximize the convenience for the majority of experimental scientists, a user-friendly web-server for the new predictor has been established at http://www.jci-bioinfo.cn/pLoc_bal-mPlant/, by which users can easily get their desired results without the need to go through the detailed mathematics.


2019 ◽  
Vol 20 (5) ◽  
pp. 488-500 ◽  
Author(s):  
Yan Hu ◽  
Yi Lu ◽  
Shuo Wang ◽  
Mengying Zhang ◽  
Xiaosheng Qu ◽  
...  

Background: Globally the number of cancer patients and deaths are continuing to increase yearly, and cancer has, therefore, become one of the world&#039;s highest causes of morbidity and mortality. In recent years, the study of anticancer drugs has become one of the most popular medical topics. </P><P> Objective: In this review, in order to study the application of machine learning in predicting anticancer drugs activity, some machine learning approaches such as Linear Discriminant Analysis (LDA), Principal components analysis (PCA), Support Vector Machine (SVM), Random forest (RF), k-Nearest Neighbor (kNN), and Naïve Bayes (NB) were selected, and the examples of their applications in anticancer drugs design are listed. </P><P> Results: Machine learning contributes a lot to anticancer drugs design and helps researchers by saving time and is cost effective. However, it can only be an assisting tool for drug design. </P><P> Conclusion: This paper introduces the application of machine learning approaches in anticancer drug design. Many examples of success in identification and prediction in the area of anticancer drugs activity prediction are discussed, and the anticancer drugs research is still in active progress. Moreover, the merits of some web servers related to anticancer drugs are mentioned.


2017 ◽  
Vol 9 (1) ◽  
pp. 1-9
Author(s):  
Fandiansyah Fandiansyah ◽  
Jayanti Yusmah Sari ◽  
Ika Putri Ningrum

Face recognition is one of the biometric system that mostly used for individual recognition in the absent machine or access control. This is because the face is the most visible part of human anatomy and serves as the first distinguishing factor of a human being. Feature extraction and classification are the key to face recognition, as they are to any pattern classification task. In this paper, we describe a face recognition method based on Linear Discriminant Analysis (LDA) and k-Nearest Neighbor classifier. LDA used for feature extraction, which directly extracts the proper features from image matrices with the objective of maximizing between-class variations and minimizing within-class variations. The features of a testing image will be compared to the features of database image using K-Nearest Neighbor classifier. The experiments in this paper are performed by using using 66 face images of 22 different people. The experimental result shows that the recognition accuracy is up to 98.33%. Index Terms—face recognition, k nearest neighbor, linear discriminant analysis.


2020 ◽  
Author(s):  
Nazrul Anuar Nayan ◽  
Hafifah Ab Hamid ◽  
Mohd Zubir Suboh ◽  
Noraidatulakma Abdullah ◽  
Rosmina Jaafar ◽  
...  

Abstract Background: Cardiovascular disease (CVD) is the leading cause of deaths worldwide. In 2017, CVD contributed to 13,503 deaths in Malaysia. The current approaches for CVD prediction are usually invasive and costly. Machine learning (ML) techniques allow an accurate prediction by utilizing the complex interactions among relevant risk factors. Results: This study presents a case–control study involving 60 participants from The Malaysian Cohort, which is a prospective population-based project. Five parameters, namely, the R–R interval and root mean square of successive differences extracted from electrocardiogram (ECG), systolic and diastolic blood pressures, and total cholesterol level, were statistically significant in predicting CVD. Six ML algorithms, namely, linear discriminant analysis, linear and quadratic support vector machines, decision tree, k-nearest neighbor, and artificial neural network (ANN), were evaluated to determine the most accurate classifier in predicting CVD risk. ANN, which achieved 90% specificity, 90% sensitivity, and 90% accuracy, demonstrated the highest prediction performance among the six algorithms. Conclusions: In summary, by utilizing ML techniques, ECG data can serve as a good parameter for CVD prediction among the Malaysian multiethnic population.


Author(s):  
Amit Saxena ◽  
John Wang

This paper presents a two-phase scheme to select reduced number of features from a dataset using Genetic Algorithm (GA) and testing the classification accuracy (CA) of the dataset with the reduced feature set. In the first phase of the proposed work, an unsupervised approach to select a subset of features is applied. GA is used to select stochastically reduced number of features with Sammon Error as the fitness function. Different subsets of features are obtained. In the second phase, each of the reduced features set is applied to test the CA of the dataset. The CA of a data set is validated using supervised k-nearest neighbor (k-nn) algorithm. The novelty of the proposed scheme is that each reduced feature set obtained in the first phase is investigated for CA using the k-nn classification with different Minkowski metric i.e. non-Euclidean norms instead of conventional Euclidean norm (L2). Final results are presented in the paper with extensive simulations on seven real and one synthetic, data sets. It is revealed from the proposed investigation that taking different norms produces better CA and hence a scope for better feature subset selection.


Sign in / Sign up

Export Citation Format

Share Document