scholarly journals Local adaptation of Legionella pneumophila within a hospital hot water system increases tolerance to copper

2020 ◽  
Author(s):  
Emilie Bédard ◽  
Hana Trigui ◽  
Jeffrey Liang ◽  
Margot Doberva ◽  
Kiran Paranjape ◽  
...  

AbstractIn large-building water systems, Legionella pneumophila is exposed to common environmental stressors such as copper. The aim of this study was to evaluate the susceptibility to copper of L. pneumophila isolates recovered from various sites: two clinical and seven environmental from hot water systems biofilm & water, and from cooling tower water. After one-week acclimation in simulated drinking water, strains were exposed to various copper concentrations (0.8 to 5 mg/L) for over 672 hours. Complete loss of culturability was observed for three isolates, following copper exposure to 5 mg/L for 672h. Two ST1427-like isolates were highly sensitive to copper, while the other two, isolated from biofilm samples, were resistant. The expression of the copper resistance gene copA evaluated by RT-qPCR was significantly higher for the biofilm isolates. All four ST1427-like isolates were recovered from the same water system during an outbreak. Whole genome sequencing results confirmed that the four isolates are very close phylogenetically, differing by only 29 single nucleotide polymorphisms, suggesting in situ adaptation to microenvironmental conditions, possibly due to epigenetic regulation. These results indicate that the immediate environment within a building water distribution system influences the tolerance of L. pneumophila to copper. Increased contact of L. pneumophila biofilm strains with copper piping or copper alloys in the heat exchanger might lead to local adaptation. The phenotypic differences observed between water and biofilm isolates from the hot water system of a healthcare facility warrants further investigation to assess the relevance of evaluating disinfection performances based on water sampling alone.ImportanceLegionella pneumophila is a pathogen indigenous to natural and large building water systems in the bulk and the biofilm phases. The immediate environment within a system can impact the tolerance of L. pneumophila to environmental stressors, including copper. In healthcare facilities, copper levels in water can vary, depending on water quality, plumbing materials and age. This study evaluated the impact of the isolation site (water vs biofilm, hot water system vs cooling tower) within building water systems. Closely related strains isolated from a healthcare facility hot water system exhibited variable tolerance to copper stress shown by differential expression of copA, with biofilm isolates displaying highest expression and tolerance. Relying on the detection of L. pneumophila in water samples following exposure to environmental stressor such as copper may underestimate the prevalence of L. pneumophila, leading to inappropriate risk management strategies and increasing the risk of exposure for vulnerable patients.

Author(s):  
Emilie Bédard ◽  
Hana Trigui ◽  
Jeffrey Liang ◽  
Margot Doberva ◽  
Kiran Paranjape ◽  
...  

In large-building water systems, Legionella pneumophila is exposed to common environmental stressors such as copper. The aim of this study was to evaluate the susceptibility to copper of L. pneumophila isolates recovered from various sites: two clinical and seven environmental from hot water systems biofilm & water, and from cooling tower water. After one-week acclimation in simulated drinking water, strains were exposed to various copper concentrations (0.8 to 5 mg/L) for over 672 hours. Complete loss of culturability was observed for three isolates, following copper exposure to 5 mg/L for 672h. Two ST1427-like isolates were highly sensitive to copper, while the other two, isolated from biofilm samples, maintained higher culturability. The expression of the copper resistance gene copA evaluated by RT-qPCR was significantly higher for the biofilm isolates. All four ST1427-like isolates were recovered from the same water system during an outbreak. Whole genome sequencing results confirmed that the four isolates are very close phylogenetically, differing by only 29 single nucleotide polymorphisms, suggesting in situ adaptation to microenvironmental conditions, possibly due to epigenetic regulation. These results indicate that the immediate environment within a building water distribution system influences the tolerance of L. pneumophila to copper. Increased contact of L. pneumophila biofilm strains with copper piping or copper alloys in the heat exchanger might lead to local adaptation. The phenotypic differences observed between water and biofilm isolates from the hot water system of a healthcare facility warrants further investigation to assess the relevance of evaluating disinfection performances based on water sampling alone. Importance Legionella pneumophila is a pathogen indigenous to natural and large building water systems in the bulk and the biofilm phases. The immediate environment within a system can impact the tolerance of L. pneumophila to environmental stressors, including copper. In healthcare facilities, copper levels in water can vary, depending on water quality, plumbing materials and age. This study evaluated the impact of the isolation site (water vs biofilm, hot water system vs cooling tower) within building water systems. Closely related strains isolated from a healthcare facility hot water system exhibited variable tolerance to copper stress shown by differential expression of copA, with biofilm isolates displaying highest expression and tolerance. Relying on the detection of L. pneumophila in water samples following exposure to environmental stressor such as copper may underestimate the prevalence of L. pneumophila, leading to inappropriate risk management strategies and increasing the risk of exposure for vulnerable patients.


1996 ◽  
Vol 42 (8) ◽  
pp. 811-818 ◽  
Author(s):  
Outi M. Zacheus ◽  
Pertti J. Martikainen

The decontamination of Legionella pneumophila and other heterotrophic microbes by heat flushing in four legionellae-positive hot water systems was studied. Before the decontamination procedure, the concentration of legionellae varied from 3.0 × 10−3 to 3.5 × 10−5 cfu/L and the hot water temperature from 43.6 to 51.5 °C. During the contamination the temperature was raised to 60–70 °C. All taps and showers were cleaned from sediments and flushed with hot water twice a day for several minutes. The decontamination lasted for 2–4 weeks. In a few weeks the heat-flushing method reduced the concentration of legionellae below the detection limit (50 cfu/L) in the hot circulating water system just before and after the heat exchanger. The high hot water temperature also decreased the viable counts of heterotrophic bacteria, fungi, and total microbial cells determined by the epifluorescent microscopy. However, the eradication of legionellae failed in a water system where the water temperature remained below 60 °C in some parts of the system. After the decontamination, the temperature of hot water was lowered to 55 °C. Thereafter, all the studied hot water systems were recolonized by legionellae within a few months, showing that the decontamination by heat flushing was temporary. Also, the contamination of other bacteria increased in a few months to the level before decontamination.Key words: legionellae, hot water system, decontamination, water temperature, heterotrophic bacteria.


2006 ◽  
Vol 73 (5) ◽  
pp. 1452-1456 ◽  
Author(s):  
Diaraf Farba Yaradou ◽  
Sylvie Hallier-Soulier ◽  
Sophie Moreau ◽  
Florence Poty ◽  
Yves Hillion ◽  
...  

ABSTRACT We evaluated a ready-to-use real-time quantitative Legionella pneumophila PCR assay system by testing 136 hot-water-system samples collected from 55 sites as well as 49 cooling tower samples collected from 20 different sites, in parallel with the standard culture method. The PCR assay was reproducible and suitable for routine quantification of L. pneumophila. An acceptable correlation between PCR and culture results was obtained for sanitary hot-water samples but not for cooling tower samples. We also monitored the same L. pneumophila-contaminated cooling tower for 13 months by analyzing 104 serial samples. The culture and PCR results were extremely variable over time, but the curves were similar. The differences between the PCR and culture results did not change over time and were not affected by regular biocide treatment. This ready-to-use PCR assay for L. pneumophila quantification could permit more timely disinfection of cooling towers.


2006 ◽  
Vol 72 (4) ◽  
pp. 2801-2808 ◽  
Author(s):  
Philippe Joly ◽  
Pierre-Alain Falconnet ◽  
Janine André ◽  
Nicole Weill ◽  
Monique Reyrolle ◽  
...  

ABSTRACT Quantitative Legionella PCRs targeting the 16S rRNA gene (specific for the genus Legionella) and the mip gene (specific for the species Legionella pneumophila) were applied to a total of 223 hot water system samples (131 in one laboratory and 92 in another laboratory) and 37 cooling tower samples (all in the same laboratory). The PCR results were compared with those of conventional culture. 16S rRNA gene PCR results were nonquantifiable for 2.8% of cooling tower samples and up to 39.1% of hot water system samples, and this was highly predictive of Legionella CFU counts below 250/liter. PCR cutoff values for identifying hot water system samples containing >103 CFU/liter legionellae were determined separately in each laboratory. The cutoffs differed widely between the laboratories and had sensitivities from 87.7 to 92.9% and specificities from 77.3 to 96.5%. The best specificity was obtained with mip PCR. PCR cutoffs could not be determined for cooling tower samples, as the results were highly variable and often high for culture-negative samples. Thus, quantitative Legionella PCR appears to be applicable to samples from hot water systems, but the positivity cutoff has to be determined in each laboratory.


2019 ◽  
Vol 8 (18) ◽  
Author(s):  
Vicente Gomez-Alvarez ◽  
Laura Boczek ◽  
Dawn King ◽  
Adin Pemberton ◽  
Stacy Pfaller ◽  
...  

Public health data show that a significant fraction of the nation’s waterborne disease outbreaks are attributable to premise plumbing. We report the draft genome sequences of seven Legionella pneumophila serogroup 1 isolates from hot water lines of a large building.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
S Vincenti ◽  
D I La Milia ◽  
F Boninti ◽  
E Marchetti ◽  
M Wachocka ◽  
...  

Abstract The prevention of Legionella colonization of water systems is one of the goals of hospital management. Among chemical disinfection methods, chlorine dioxide (ClO2) has been largely used to control Legionella in water systems. We analysed the distribution of Legionella pneumophila serogroups (sg) and Legionella other spp before (PRE) and after (POST) installation of chlorine dioxide (ClO2) continuous disinfection systems in a Teaching Hospital in Rome. According to the Italian National Guidelines, our surveillance plan involved a systematic sampling of the water system. The sampling was performed from Jan. 2010 to Dec. 2019. From 2011 to 2019, ClO2 continuous disinfection systems were installed in all hot water system of the hospital, and maintained at a concentration of 0.25 mg/l at the end point. The isolated strains of Legionella were first serotyped using a kit that identifies sg1, other species and that discriminate sg from 2 to 15. 1505 hot water samples were collected from the Hospital and analysed. 363 samples are PRE and 1142 are POST activation of ClO2. Only the 16.74% of monitored sampling points were colonized by Legionella during the study period. This percentage decrease from 31.40% of PRE samples, to 12.08% of POST samples (p ≤ 0.000). The sg isolated were: sg3 (60.31%), sg8 (17.12%), sg1 (16.73%), sg6 (1.95%) and other species (3.89%). Comparing the distribution of sg between the PRE and POST samples, the sg8 showed a high increase (+136.84%) and the sg3 a slight decrease (-17.94%). These variations were statistically significative. The results showed a predominance of Legionella pneumophila sg3, compared to what was observed in a multicenter study conducted between different hospitals of various regions of Italy, where sg6 was the major isolate. The ClO2 affect the distribution of sg, in particular for sg8. This interesting result will be further investigated. Key messages Our data deriving from an environmental monitoring plan, show that the ClO2 affects the distribution of Legionella’s serogroups. The ClO2 reduces the percentage of samples colonized by Legionella. The ClO2 reduces the percentage of samples colonized by Legionella.


1987 ◽  
Vol 8 (2) ◽  
pp. 53-58 ◽  
Author(s):  
Jeffrey M. Johnston ◽  
Robert H. Latham ◽  
Frederick A. Meier ◽  
Jon A. Green ◽  
Rebecca Boshard ◽  
...  

AbstractMolecular laboratory techniques were used to study the epidemiology of an outbreak of nosocomial Legionnaires' disease. All patient isolates were Legionella pneumophila serogroup 1 and showed identical plasmid profiles and reactions with serogroup-specific monoclonal antibodies. L pneumophila was also cultured from four of five cooling tower water samples; however, the isolate from only one tower was serogroup 1 of the same sub-type as patient isolates. Since the cases were temporally clustered and epidemiologically associated with exposure to cooling tower aerosols, the single cooling tower implicated by molecular analysis was the most likely source of the outbreak. Chlorination of cooling tower ponds has eradicated the epidemic strain. Since potable water also harbored the infecting organism and was the probable source for cooling tower contamination, decontamination of the hospital water system was also undertaken. Superchlorination of hot water holding tanks to 17 ppm on a weekly basis has effectively eradicated L pneumophila from the potable water system and appears to be a reasonable, simple, and relatively inexpensive alternative to previously described methods of control.


1997 ◽  
Vol 43 (12) ◽  
pp. 1189-1196 ◽  
Author(s):  
Carmen Moreno ◽  
Isabel de Blas ◽  
Francisca Miralles ◽  
David Apraiz ◽  
Vicente Catalan

In this paper we describe a simple method, noncorrosive to pipes, for the eradication of Legionella pneumophila from potable water systems. This method is based on the systematic purging of the pipe networks with cold water containing 1 – 1.5 mg residual chlorine/L. In the hot water system, a new pipe bypassing the water heater was installed, whereas in the air conditioning system, the circuit is purged with water from the tap water system. The feasibility of this method was studied in two hotels in which the presence of Legionella was detected despite treatment of the water by the hyperchlorination method. The evolution of the presence of Legionella was studied by culture and polymerase chain reaction. Eighty samples from hotel A and sixty-seven samples from hotel B were analyzed during the time that the eradication method was applied. Our results showed that this method permitted the effective elimination of L. pneumophila after 5 months in hotel A and 7 months in hotel B.Key words: Legionella pneumophila, eradication.


Sign in / Sign up

Export Citation Format

Share Document