scholarly journals Social recognition in rats and mice requires integration of olfactory, somatosensory and auditory cues

Author(s):  
Shani Haskal de la Zerda ◽  
Shai Netser ◽  
Hen Magalnik ◽  
Mayan Briller ◽  
Dan Marzan ◽  
...  

AbstractIn humans, discrimination between individuals, also termed social recognition, can rely on a single sensory modality, such as vision. By analogy, social recognition in rodents is thought to be based upon olfaction. Here, we hypothesized that social recognition in rodents relies upon integration of olfactory, auditory and somatosensory cues, hence requiring active behavior of social stimuli. Using distinct social recognition tests, we demonstrated that adult male rats and mice do not recognize familiar stimuli or learn the identity of novel stimuli that are inactive due to anesthesia. We further revealed that impairing the olfactory, somatosensory or auditory systems prevents recognition of familiar stimuli. Finally, we found that familiar and novel stimuli generate distinct movement patterns during social discrimination and that subjects react differentially to the movement of these stimuli. Thus, unlike what occurs in humans, social recognition in rats and mice relies on integration of information from several sensory modalities.

2017 ◽  
Author(s):  
Silvia Convento ◽  
Md. Shoaibur Rahman ◽  
Jeffrey M. Yau

SummaryCortical sensory systems often activate in parallel, even when stimulation is experienced through a single sensory modality [1–3]. Critically, the functional relationship between co-activated cortical systems is unclear: Co-activations may reflect the interactive coupling between information-linked cortical systems or merely parallel but independent sensory processing. Here, we report causal evidence consistent with the hypothesis that human somatosensory cortex (S1), which co-activates with auditory cortex during the processing of vibrations and textures [4–9], interactively couples to cortical systems that support auditory perception. In a series of behavioural experiments, we used transcranial magnetic stimulation (TMS) to probe interactions between the somatosensory and auditory perceptual systems as we manipulated attention state. Acute manipulation of S1 activity using TMS impairs auditory frequency perception when subjects simultaneously attend to auditory and tactile frequency, but not when attention is directed to audition alone. Auditory frequency perception is unaffected by TMS over visual cortex thus confirming the privileged interactions between the somatosensory and auditory systems in temporal frequency processing [10–13]. Our results provide a key demonstration that selective attention can modulate the functional properties of cortical systems thought to support specific sensory modalities. The gating of crossmodal coupling by selective attention may critically support multisensory interactions and feature-specific perception.


2021 ◽  
Author(s):  
Shani Haskal de la Zerda ◽  
Shai Netser ◽  
Hen Magalnik ◽  
Mayan Briller ◽  
Dan Marzan ◽  
...  

2021 ◽  
pp. 214-220
Author(s):  
Wei Lin Toh ◽  
Neil Thomas ◽  
Susan L. Rossell

There has been burgeoning interest in studying hallucinations in psychosis occurring across multiple sensory modalities. The current study aimed to characterize the auditory hallucination and delusion profiles in patients with auditory hallucinations only versus those with multisensory hallucinations. Participants with psychosis were partitioned into groups with voices only (AVH; <i>n</i> = 50) versus voices plus hallucinations in at least one other sensory modality (AVH+; <i>n</i> = 50), based on their responses on the Scale for the Assessment of Positive Symptoms (SAPS). Basic demographic and clinical information was collected, and the Questionnaire for Psychotic Experiences (QPE) was used to assess psychosis phenomenology. Relative to the AVH group, greater compliance to perceived commands, auditory illusions, and sensed presences was significantly elevated in the AVH+ group. The latter group also had greater levels of delusion-related distress and functional impairment and was more likely to endorse delusions of reference and misidentification. This preliminary study uncovered important phenomenological differences in those with multisensory hallucinations. Future hallucination research extending beyond the auditory modality is needed.


Author(s):  
O. L. Orobchenko ◽  
M. Ye. Romanko ◽  
M. O. Yaroshenko ◽  
I. O. Gerilovych ◽  
N. A. Zhukova ◽  
...  

The experiments were performed on 58 males of nonlinear white rats 3–4 months old and weighing 180–200 g and 64 females of nonlinear white mice 2.5–3 months old and weighing 18–22 g. In the main experiment on rats, six experimental groups were formed, the animals of which were injected intragastrically with the drug ‘MEGASTOP for dogs’ (by absolute weight) in doses of 1,000.0, 2,000.0, 3,000.0, 4,000.0, 5,000.0, and 6,000.0 mg/kg body weight; in the main experiment on mice, seven experimental groups were formed, the animals of which were administered the drug in doses of 100.0, 500.0, 1,000.0, 1,500.0, 2,000.0, 2,500.0, and 3,000.0 mg/kg body weight. Control rats and mice were injected with 2.0 cm3 and 0.2 cm3 of polyethylene glycol-400, respectively. Clinical symptoms of poisoning with the drug ‘MEGASTOP for dogs’ of white rats (at doses of 2,000.0–6,000.0 mg/kg body weight) and mice (at doses of 1,000.0–3,000.0 mg/kg body weight) were refusals of food and water, loss of coordination, sitting in one place, a dose-dependent increase in depression with subsequent complete depression, lack of response to external stimuli and death on the first or fourth day after administration. During autopsy in rats and mice that died as a result of poisoning with the drug ‘MEGASTOP for dogs’, we recorded pallor of the mucous membranes of the mouth, trachea, pharynx, and esophagus; increase in heart volume, atrial blood supply; pulmonary hyperemia; uncoagulated blood; increase in liver volume, dark cherry color, flabby consistency; catarrhal inflammation of the mucous membrane of the small intestine. According to the results of determining the parameters of acute toxicity of the drug ‘MEGASTOP for dogs’ in the case of a single intragastric injection, LD50 for male rats is 3,384.98 ± 444.94 mg/kg, and for female mice — 2,025.88 ± 279.46 mg/kg body weight, which allows to classify it to class IV by the toxicity — low-toxic substances (LD50 — 501–5,000 mg/kg) and by the degree of danger to class III— moderately dangerous substances (LD50 — 151–5,000 mg/kg)


2016 ◽  
Vol 14 (3) ◽  
pp. 21-31 ◽  
Author(s):  
O.B. Bogdashina

Synaesthesia — a phenomenon of perception, when stimulation of one sensory modality triggers a perception in one or more other sensory modalities. Synaesthesia is not uniform and can manifest itself in different ways. As the sensations and their interpretation vary in different periods of time, it makes it hard to study this phenom¬enon. The article presents the classification of different forms of synaesthesia, including sensory and cognitive; and bimodal and multimodal synaesthesia. Some synaesthetes have several forms and variants of synaesthesia, while others – just one form of it. Although synaesthesia is not specific to autism spectrum disorders, it is quite common among autistic individuals. The article deals with the most common forms of synaesthesia in autism, advantages and problems of synesthetic perception in children with autism spectrum disorders, and provides some advice to parents how to recognise synaesthesia in children with autism.


2019 ◽  
Author(s):  
Yingying Han ◽  
Bo Sichterman ◽  
Maria Carrillo ◽  
Valeria Gazzola ◽  
Christian Keysers

AbstractEmotional contagion, the ability to feel what other individuals feel, is thought to be an important element of social life. In humans, emotional contagion has been shown to be stronger in women than men. Emotional contagion has been shown to exist also in rodents, and a growing number of studies explore the neural basis of emotional contagion in male rats and mice. These studies promise to shed light on the mechanisms that might go astray in psychiatric disorders characterized by dysfunctions of emotional contagion and empathy. Here we explore whether there are sex differences in emotional contagion in rats. We use an established paradigm in which a demonstrator rat receives footshocks while freezing is measured in both the demonstrator and an observer rat, which can hear, smell and see each other. By comparing pairs of male rats with pairs of female rats, we find (i) that female demonstrators freeze less when submitted to footshocks, but that (ii) the emotional contagion response, i.e. the degree of influence across the rats, does not depend on the sex of the rats. This was true whether emotional contagion was quantified based on the slope of a regression linking demonstrator and observer average freezing, or on Granger causality estimates of moment-to-moment freezing. The lack of sex differences in emotional contagion is compatible with an interpretation of emotional contagion as serving selfish danger detection.


1983 ◽  
Vol 10 (2) ◽  
pp. 95-101 ◽  
Author(s):  
A. V. McGrady ◽  
J. Chakraborty

Endocrinology ◽  
1973 ◽  
Vol 92 (4) ◽  
pp. 1223-1228 ◽  
Author(s):  
A. BARTKE ◽  
R.E. STEELE ◽  
N. MUSTO ◽  
B.V. CALDWELL

Author(s):  
Drew McRacken ◽  
Maddie Dyson ◽  
Kevin Hu

Over the past few decades, there has been a significant number of reports that suggested that reaction times for different sensory modalities were different – e.g., that visual reaction time was slower than tactile reaction time. A recent report by Holden and colleagues stated that (1) there has been a significant historic upward drift in reaction times reported in the literature, (2) that this drift or degradation in reaction times could be accounted for by inaccuracies in the methods used and (3) that these inaccurate methods led to inaccurate reporting of differences between visual and tactile based reaction time testing.  The Holden study utilized robotics (i.e., no human factors) to test visual and tactile reaction time methods but did not assess how individuals would perform on different sensory modalities.  This study utilized three different sensory modalities: visual, auditory, and tactile, to test reaction time. By changing the way in which the subjects were prompted and measuring subsequent reaction time, the impact of sensory modality could be analyzed. Reaction time testing for two sensory modalities, auditory and visual, were administered through an Arduino Uno microcontroller device, while tactile-based reaction time testing was administered with the Brain Gauge. A range of stimulus intensities was delivered for the reaction times delivered by each sensory modality. The average reaction time and reaction time variability was assessed and a trend could be identified for the reaction time measurements of each of the sensory modalities. Switching the sensory modality did not result in a difference in reaction time and it was concluded that this was due to the implementation of accurate circuitry used to deliver each test. Increasing stimulus intensity for each sensory modality resulted in faster reaction times. The results of this study confirm the findings of Holden and colleagues and contradict the results reported in countless studies that conclude that (1) reaction times are historically slower now than they were 50 years ago and (2) that there are differences in reaction times for different sensory modalities (vision, hearing, tactile). The implications of this are that utilization of accurate reaction time methods could have a significant impact on clinical outcomes and that many methods in current clinical use are basically perpetuating poor methods and wasting time and money of countless subjects or patients.


Toxins ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 480 ◽  
Author(s):  
Diana Herman ◽  
Peter Mantle

Ochratoxin A is best known as a potent renal carcinogen in male rats and mice after necessarily protracted ingestion, although valid extrapolation to any human disease has not been verified. The hypothesis that the toxin is a cause of human testicular cancer was proposed a decade ago and has proliferated since, partly through incomplete study of the scientific literature. Archived tumorous rat testes were available from Fischer F344 rats exposed to continuous dietary exposure for half of or the whole life in London in the 2000s. Renal cancer occurred in some of these cases and testicular tumours were observed frequently, as expected, in both treated and untreated animals. Application of clinical immunohistochemistry has for the first time consistently diagnosed the testicular hypertrophy in toxin-treated rats as Leydig cell tumours. Comparison is made with similar analysis of tumorous testes from control (untreated) rats from U.S. National Toxicology Program studies, both of ochratoxin A (1989) and the more recent one on Ginkgo biloba. All have been found to have identical pathology as being of sex cord-stromal origin. Such are rare in humans, most being of germinal cell origin. The absence of experimental evidence of any specific rat testicular cellular pathology attributable to long-term dietary ochratoxin A exposure discredits any experimental animal evidence of testicular tumorigenicity. Thus, no epidemiological connection between ochratoxin A and the incidence of human testicular cancer can be justified scientifically.


Sign in / Sign up

Export Citation Format

Share Document