scholarly journals Hemogram Data as a Tool for Decision-making in COVID-19 Management: Applications to Resource Scarcity Scenarios

Author(s):  
Marcio Dorn ◽  
Eduardo Avila ◽  
Clarice Sampaio Alho ◽  
Alessandro Kahmann

Background: COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure. A critical element involves essential workforce management since current protocols recommend release from duty for symptomatic individuals, including essential personnel. Testing capacity is also problematic in several countries, where diagnosis demand outnumbers available local testing capacity. Purpose: This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients and how they can be used to predict qRT-PCR test results. Methods: A Naïve-Bayes model for machine learning is proposed for handling different scarcity scenarios, including managing symptomatic essential workforce and absence of diagnostic tests. Hemogram result data was used to predict qRT-PCR results in situations where the latter was not performed, or results are not yet available. Adjusts in assumed prior probabilities allow fine-tuning of the model, according to actual prediction context. Results: Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity. Data assessment can be performed in an individual or simultaneous basis, according to desired outcome. Based on hemogram data and background scarcity context, resource distribution is significantly optimized when model-based patient selection is observed, compared to random choice. The model can help manage testing deficiency and other critical circumstances. Conclusions: Machine learning models can be derived from widely available, quick, and inexpensive exam data in order to predict qRT-PCR results used in COVID-19 diagnosis. These models can be used to assist strategic decision-making in resource scarcity scenarios, including personnel shortage, lack of medical resources, and testing insufficiency.

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9482
Author(s):  
Eduardo Avila ◽  
Alessandro Kahmann ◽  
Clarice Alho ◽  
Marcio Dorn

Background COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure. A critical element involves essential workforce management since current protocols recommend release from duty for symptomatic individuals, including essential personnel. Testing capacity is also problematic in several countries, where diagnosis demand outnumbers available local testing capacity. Purpose This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients and how they can be used to predict qRT-PCR test results. Methods Hemogram exams data from 510 symptomatic patients (73 positives and 437 negatives) were used to model and predict qRT-PCR results through Naïve-Bayes algorithms. Different scarcity scenarios were simulated, including symptomatic essential workforce management and absence of diagnostic tests. Adjusts in assumed prior probabilities allow fine-tuning of the model, according to actual prediction context. Results Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity, yielding a 100% sensitivity and 22.6% specificity with a prior of 0.9999; 76.7% for both sensitivity and specificity with a prior of 0.2933; and 0% sensitivity and 100% specificity with a prior of 0.001. Regarding background scarcity context, resources allocation can be significantly improved when model-based patient selection is observed, compared to random choice. Conclusions Machine learning models can be derived from widely available, quick, and inexpensive exam data in order to predict qRT-PCR results used in COVID-19 diagnosis. These models can be used to assist strategic decision-making in resource scarcity scenarios, including personnel shortage, lack of medical resources, and testing insufficiency.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 75007-75017 ◽  
Author(s):  
Yuri Nieto ◽  
Vicente Gacia-Diaz ◽  
Carlos Montenegro ◽  
Claudio Camilo Gonzalez ◽  
Ruben Gonzalez Crespo

Author(s):  
Wajid Hassan ◽  
Te-Shun Chou ◽  
Omar Tamer ◽  
John Pickard ◽  
Patrick Appiah-Kubi ◽  
...  

<p>Cloud computing has sweeping impact on the human productivity. Today it’s used for Computing, Storage, Predictions and Intelligent Decision Making, among others. Intelligent Decision Making using Machine Learning has pushed for the Cloud Services to be even more fast, robust and accurate. Security remains one of the major concerns which affect the cloud computing growth however there exist various research challenges in cloud computing adoption such as lack of well managed service level agreement (SLA), frequent disconnections, resource scarcity, interoperability, privacy, and reliability. Tremendous amount of work still needs to be done to explore the security challenges arising due to widespread usage of cloud deployment using Containers. We also discuss Impact of Cloud Computing and Cloud Standards. Hence in this research paper, a detailed survey of cloud computing, concepts, architectural principles, key services, and implementation, design and deployment challenges of cloud computing are discussed in detail and important future research directions in the era of Machine Learning and Data Science have been identified.</p>


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1552-P
Author(s):  
KAZUYA FUJIHARA ◽  
MAYUKO H. YAMADA ◽  
YASUHIRO MATSUBAYASHI ◽  
MASAHIKO YAMAMOTO ◽  
TOSHIHIRO IIZUKA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document