scholarly journals Balancing signal and photoperturbation in multiphoton light-sheet microscopy by optimizing laser pulse frequency

2020 ◽  
Author(s):  
Vincent Maioli ◽  
Antoine Boniface ◽  
Pierre Mahou ◽  
Júlia Ferrer Ortas ◽  
Lamiae Abdeladim ◽  
...  

AbstractImproving the imaging speed of multiphoton microscopy is an active research field. Among recent strategies, light-sheet illumination holds distinctive advantages for achieving fast imaging in vivo. However, photoperturbation in multiphoton light-sheet microscopy remains poorly investigated. We show here that the heart beat rate of zebrafish embryos is a sensitive probe of linear and nonlinear photoperturbations. By analyzing its behavior with respect to laser power, pulse frequency and wavelength, we derive guidelines to balance signal and photoperturbation. We then demonstrate one order-of-magnitude signal enhancement over previous implementations by optimizing the laser pulse frequency. These results open new opportunities for fast live tissue imaging.

Author(s):  
Vincent Maioli ◽  
Antoine Boniface ◽  
Pierre Mahou ◽  
Júlia Ferrer Ortas ◽  
Lamiae Abdeladim ◽  
...  

Author(s):  
Vincent Maioli ◽  
Antoine Boniface ◽  
Pierre Mahou ◽  
Júlia Ferrer Ortas ◽  
Lamiae Abdeladim ◽  
...  

2020 ◽  
Vol 11 (10) ◽  
pp. 6012 ◽  
Author(s):  
Vincent Maioli ◽  
Antoine Boniface ◽  
Pierre Mahou ◽  
Júlia Ferrer Ortas ◽  
Lamiae Abdeladim ◽  
...  

2021 ◽  
Author(s):  
Kelly Kersten ◽  
Kenneth H Hu ◽  
Alexis J Combes ◽  
Bushra Samad ◽  
Tory Harwin ◽  
...  

T cell exhaustion is a major impediment to anti-tumor immunity. However, it remains elusive how other immune cells in the tumor microenvironment (TME) contribute to this dysfunctional state. Here we show that the biology of tumor-associated macrophages (TAM) and exhausted T cells (Tex) in the TME is extensively linked. We demonstrate that in vivo depletion of TAM reduces exhaustion programs in tumor-infiltrating CD8+ T cells and reinvigorates their effector potential. Reciprocally, transcriptional and epigenetic profiling reveals that Tex express factors that actively recruit monocytes to the TME and shape their differentiation. Using lattice light sheet microscopy, we show that TAM and CD8+ T cells engage in unique long-lasting antigen-specific synaptic interactions that fail to activate T cells, but prime them for exhaustion, which is then accelerated in hypoxic conditions. Spatially resolved sequencing supports a spatiotemporal self-enforcing positive feedback circuit that is aligned to protect rather than destroy a tumor.


2017 ◽  
Vol 145 ◽  
pp. S70-S71
Author(s):  
Prameet Kaur ◽  
Timothy E. Saunders ◽  
Nicholas Tolwinski

Author(s):  
Simon M. Ameer-Beg ◽  
Claire A. Mitchell ◽  
Simon P. Poland ◽  
Robert D. Knight ◽  
Guoqing Wang ◽  
...  

2019 ◽  
Vol 116 (51) ◽  
pp. 25958-25967
Author(s):  
Janos Fuzik ◽  
Sabah Rehman ◽  
Fatima Girach ◽  
Andras G. Miklosi ◽  
Solomiia Korchynska ◽  
...  

Psychostimulant use is an ever-increasing socioeconomic burden, including a dramatic rise during pregnancy. Nevertheless, brain-wide effects of psychostimulant exposure are incompletely understood. Here, we performed Fos-CreERT2–based activity mapping, correlated for pregnant mouse dams and their fetuses with amphetamine, nicotine, and caffeine applied acutely during midgestation. While light-sheet microscopy-assisted intact tissue imaging revealed drug- and age-specific neuronal activation, the indusium griseum (IG) appeared indiscriminately affected. By using GAD67gfp/+mice we subdivided the IG into a dorsolateral domain populated by γ-aminobutyric acidergic interneurons and a ventromedial segment containing glutamatergic neurons, many showing drug-induced activation and sequentially expressing Pou3f3/Brn1 and secretagogin (Scgn) during differentiation. We then combined Patch-seq and circuit mapping to show that the ventromedial IG is a quasi-continuum of glutamatergic neurons (IG-Vglut1+) reminiscent of dentate granule cells in both rodents and humans, whose dendrites emanate perpendicularly toward while their axons course parallel with the superior longitudinal fissure. IG-Vglut1+neurons receive VGLUT1+and VGLUT2+excitatory afferents that topologically segregate along their somatodendritic axis. In turn, their efferents terminate in the olfactory bulb, thus being integral to a multisynaptic circuit that could feed information antiparallel to the olfactory–cortical pathway. In IG-Vglut1+neurons, prenatal psychostimulant exposure delayed the onset of Scgn expression. Genetic ablation ofScgnwas then found to sensitize adult mice toward methamphetamine-induced epilepsy. Overall, our study identifies brain-wide targets of the most common psychostimulants, among whichScgn+/Vglut1+neurons of the IG link limbic and olfactory circuits.


2020 ◽  
Vol 44 (1) ◽  
pp. 68-87 ◽  
Author(s):  
Petr Dvořák ◽  
Yuliya Krasylenko ◽  
Miroslav Ovečka ◽  
Jasim Basheer ◽  
Veronika Zapletalová ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document