scholarly journals Beyond sharing unpleasant affect – evidence for pain-specific opioidergic modulation of empathy for pain

Author(s):  
Markus Rütgen ◽  
Eva-Maria Wirth ◽  
Igor Riečanský ◽  
Allan Hummer ◽  
Christian Windischberger ◽  
...  

AbstractThe neural mechanisms underpinning empathy for pain are still a matter of debate. One of the major questions is whether empathy-related pain responses indicate domain-general vs. pain-specific affective responses. Using fMRI and psychopharmacological experiments, we investigated if placebo analgesia reduces first-hand and empathic experiences of affective touch, and compared them to the effects on pain. Placebo analgesia also affected the first-hand and empathic experience of unpleasant touch, implicating domain-general effects. However, and in contrast to pain and pain empathy, administering an opioid antagonist did not block these effects. Moreover, placebo analgesia reduced neural activity related to both modalities in the bilateral insular cortex, while it specifically modulated activity in the anterior midcingulate cortex for pain and pain empathy. These findings provide causal evidence that one of the major neurochemical systems for pain regulation is involved in pain empathy, and crucially substantiate the role of shared representations in empathy.

2015 ◽  
Vol 112 (41) ◽  
pp. E5638-E5646 ◽  
Author(s):  
Markus Rütgen ◽  
Eva-Maria Seidel ◽  
Giorgia Silani ◽  
Igor Riečanský ◽  
Allan Hummer ◽  
...  

Empathy for pain activates brain areas partially overlapping with those underpinning the first-hand experience of pain. It remains unclear, however, whether such shared activations imply that pain empathy engages similar neural functions as first-hand pain experiences. To overcome the limitations of previous neuroimaging research, we pursued a conceptually novel approach: we used the phenomenon of placebo analgesia to experimentally reduce the first-hand experience of pain, and assessed whether this results in a concomitant reduction of empathy for pain. We first carried out a functional MRI experiment (n = 102) that yielded results in the expected direction: participants experiencing placebo analgesia also reported decreased empathy for pain, and this was associated with reduced engagement of anterior insular and midcingulate cortex: that is, areas previously associated with shared activations in pain and empathy for pain. In a second step, we used a psychopharmacological manipulation (n = 50) to determine whether these effects can be blocked via an opioid antagonist. The administration of the opioid antagonist naltrexone blocked placebo analgesia and also resulted in a corresponding “normalization” of empathy for pain. Taken together, these findings suggest that pain empathy may be associated with neural responses and neurotransmitter activity engaged during first-hand pain, and thus might indeed be grounded in our own pain experiences.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Erik L Meijs ◽  
Pim Mostert ◽  
Heleen A Slagter ◽  
Floris P de Lange ◽  
Simon van Gaal

Abstract Subjective experience can be influenced by top-down factors, such as expectations and stimulus relevance. Recently, it has been shown that expectations can enhance the likelihood that a stimulus is consciously reported, but the neural mechanisms supporting this enhancement are still unclear. We manipulated stimulus expectations within the attentional blink (AB) paradigm using letters and combined visual psychophysics with magnetoencephalographic (MEG) recordings to investigate whether prior expectations may enhance conscious access by sharpening stimulus-specific neural representations. We further explored how stimulus-specific neural activity patterns are affected by the factors expectation, stimulus relevance and conscious report. First, we show that valid expectations about the identity of an upcoming stimulus increase the likelihood that it is consciously reported. Second, using a series of multivariate decoding analyses, we show that the identity of letters presented in and out of the AB can be reliably decoded from MEG data. Third, we show that early sensory stimulus-specific neural representations are similar for reported and missed target letters in the AB task (active report required) and an oddball task in which the letter was clearly presented but its identity was task-irrelevant. However, later sustained and stable stimulus-specific representations were uniquely observed when target letters were consciously reported (decision-dependent signal). Fourth, we show that global pre-stimulus neural activity biased perceptual decisions for a ‘seen’ response. Fifth and last, no evidence was obtained for the sharpening of sensory representations by top-down expectations. We discuss these findings in light of emerging models of perception and conscious report highlighting the role of expectations and stimulus relevance.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mehrshad Golesorkhi ◽  
Javier Gomez-Pilar ◽  
Federico Zilio ◽  
Nareg Berberian ◽  
Annemarie Wolff ◽  
...  

AbstractWe process and integrate multiple timescales into one meaningful whole. Recent evidence suggests that the brain displays a complex multiscale temporal organization. Different regions exhibit different timescales as described by the concept of intrinsic neural timescales (INT); however, their function and neural mechanisms remains unclear. We review recent literature on INT and propose that they are key for input processing. Specifically, they are shared across different species, i.e., input sharing. This suggests a role of INT in encoding inputs through matching the inputs’ stochastics with the ongoing temporal statistics of the brain’s neural activity, i.e., input encoding. Following simulation and empirical data, we point out input integration versus segregation and input sampling as key temporal mechanisms of input processing. This deeply grounds the brain within its environmental and evolutionary context. It carries major implications in understanding mental features and psychiatric disorders, as well as going beyond the brain in integrating timescales into artificial intelligence.


2016 ◽  
Vol 116 (3) ◽  
pp. 1049-1054 ◽  
Author(s):  
Wayne E. Mackey ◽  
Orrin Devinsky ◽  
Werner K. Doyle ◽  
John G. Golfinos ◽  
Clayton E. Curtis

The neural mechanisms that support working memory (WM) depend on persistent neural activity. Within topographically organized maps of space in dorsal parietal cortex, spatially selective neural activity persists during WM for location. However, to date, the necessity of these topographic subregions of human parietal cortex for WM remains unknown. To test the causal relationship of these areas to WM, we compared the performance of patients with lesions to topographically organized parietal cortex with those of controls on a memory-guided saccade (MGS) task as well as a visually guided saccade (VGS) task. The MGS task allowed us to measure WM precision continuously with great sensitivity, whereas the VGS task allowed us to control for any deficits in general spatial or visuomotor processing. Compared with controls, patients generated memory-guided saccades that were significantly slower and less accurate, whereas visually guided saccades were unaffected. These results provide key missing evidence for the causal role of topographic areas in human parietal cortex for WM, as well as the neural mechanisms supporting WM.


2021 ◽  
Author(s):  
Vilfredo De Pascalis ◽  
Arianna Vecchio

Abstract We induced placebo analgesia (PA), a phenomenon explicitly attenuating the self-pain feeling, to assess whether this resulted in reduced empathy pain when witnessing a confederate undergoing such pain experience. We recorded EEG and electrocardiogram during a painful control and PA treatment in healthy adults who rated their experienced pain and empathy for pain. We derived HRV changes and, using wavelet analysis of non-phase-locked event-related EEG oscillations, EEG spectral power differences for self-pain and other-pain conditions. First-hand PA produced a reduction of self-pain and self-unpleasantness, whereas we observed only a slight decrease of other unpleasantness. We derived linear combinations of HRV and EEG band power changes significantly associated with self-pain and empathy for pain changes using PCAs. We found that relative HR-slowing together with decreased midline ϑ-band (4-8 Hz) power directly influenced self-pain reduction and, indirectly, through chained mediating effects of the Behavioral Inhibition System and Fight-Flight-Freezing System traits. In the other-pain condition, we detected a direct influence of the midline β2-band (22-30 Hz) power reduction on the other-pain decline with a positive mediating role of Total Empathic Ability. These findings suggest that PA modulation of first-hand versus other pain relies on functionally different physiological processes involving different personality traits.


Author(s):  
Bruno Andre Santos ◽  
Rogerio Martins Gomes ◽  
Phil Husbands

AbstractIn general, the mechanisms that maintain the activity of neural systems after a triggering stimulus has been removed are not well understood. Different mechanisms involving at the cellular and network levels have been proposed. In this work, based on analysis of a computational model of a spiking neural network, it is proposed that the spike that occurs after a neuron is inhibited (the rebound spike) can be used to sustain the activity in a recurrent inhibitory neural circuit after the stimulation has been removed. It is shown that, in order to sustain the activity, the neurons participating in the recurrent circuit should fire at low frequencies. It is also shown that the occurrence of a rebound spike depends on a combination of factors including synaptic weights, synaptic conductances and the neuron state. We point out that the model developed here is minimalist and does not aim at empirical accuracy. Its purpose is to raise and discuss theoretical issues that could contribute to the understanding of neural mechanisms underlying self-sustained neural activity.


2021 ◽  
Vol 168 ◽  
pp. S219
Author(s):  
Yaping He ◽  
Yingying Wang ◽  
Danni Zheng ◽  
An Rui ◽  
Li Hu ◽  
...  

2008 ◽  
Vol 20 (12) ◽  
pp. 2137-2152 ◽  
Author(s):  
Kelly A. Snyder ◽  
Andreas Keil

Habituation refers to a decline in orienting or responding to a repeated stimulus, and can be inferred to reflect learning about the properties of the repeated stimulus when followed by increased orienting to a novel stimulus (i.e., novelty detection). Habituation and novelty detection paradigms have been used for over 40 years to study perceptual and mnemonic processes in the human infant, yet important questions remain about the nature of these processes in infants. The aim of the present study was to examine the neural mechanisms underlying habituation and novelty detection in infants. Specifically, we investigated changes in induced alpha, beta, and gamma activity in 6-month-old infants during repeated presentations of either a face or an object, and examined whether these changes predicted behavioral responses to novelty at test. We found that induced gamma activity over occipital scalp regions decreased with stimulus repetition in the face condition but not in the toy condition, and that greater decreases in the gamma band were associated with enhanced orienting to a novel face at test. The pattern and topography of these findings are consistent with observations of repetition suppression in the occipital–temporal visual processing pathway, and suggest that encoding in infant habituation paradigms may reflect a form of perceptual learning. Implications for the role of repetition suppression in infant habituation and novelty detection are discussed with respect to a biased competition model of visual attention.


Sign in / Sign up

Export Citation Format

Share Document