scholarly journals Membrane-mediated forces can stabilize tubular assemblies of I-Bar proteins

Author(s):  
Z. Jarin ◽  
A. J. Pak ◽  
P. Bassereau ◽  
G. A. Voth

AbstractCollective action by Inverse-BAR (I-BAR) domains drive micron-scale membrane remodeling. The macroscopic curvature sensing and generation behavior of I-BAR domains is well characterized, and computational models have suggested various mechanisms on simplified membrane systems, but there remain missing connections between the complex environment of the cell and the models proposed thus far. Here, we show a connection between the role of protein curvature and lipid clustering in the stabilization of large membrane deformations. We find lipid clustering provides a directional membrane-mediated interaction between membrane-bound I-BAR domains. Lipid clusters stabilize I-BAR domain aggregates that would not arise through membrane fluctuation-based or curvature-based interactions. Inside of membrane protrusions, lipid cluster-mediated interaction draws long side-by-side aggregates together resulting in more cylindrical protrusions as opposed to bulbous, irregularly shaped protrusions.Statement of SignificanceMembrane remodeling occurs throughout the cell and is crucial to proper cellular function. In the cellular environment, I-BAR proteins are responsible for sensing membrane curvature and initiating the formation of protrusions outward from the cell. Additionally, there is a large body of evidence that I-BAR domains are sufficient to reshape the membrane on scales much larger than any single domain. The mechanism by which I-BAR domains can remodel the membrane is uncertain. However, experiments show that membrane composition and most notably negatively-charge lipids like PIP2 play a role in the onset of tubulation. Using coarse-grained models, we show that I-BAR domains can cluster negatively charge lipids and clustered PIP2-like membrane structures facilitate a directional membrane-mediated interaction between I-BAR domains.

2018 ◽  
Vol 218 (1) ◽  
pp. 97-111 ◽  
Author(s):  
Liang Wang ◽  
Ziyi Yan ◽  
Helena Vihinen ◽  
Ove Eriksson ◽  
Weihuan Wang ◽  
...  

Mitochondrial function is closely linked to its dynamic membrane ultrastructure. The mitochondrial inner membrane (MIM) can form extensive membrane invaginations known as cristae, which contain the respiratory chain and ATP synthase for oxidative phosphorylation. The molecular mechanisms regulating mitochondrial ultrastructure remain poorly understood. The Bin-Amphiphysin-Rvs (BAR) domain proteins are central regulators of diverse cellular processes related to membrane remodeling and dynamics. Whether BAR domain proteins are involved in sculpting membranes in specific submitochondrial compartments is largely unknown. In this study, we report FAM92A1 as a novel BAR domain protein localizes to the matrix side of the MIM. Loss of FAM92A1 caused a severe disruption to mitochondrial morphology and ultrastructure, impairing organelle bioenergetics. Furthermore, FAM92A1 displayed a membrane-remodeling activity in vitro, inducing a high degree of membrane curvature. Collectively, our findings uncover a role for a BAR domain protein as a critical organizer of the mitochondrial ultrastructure that is indispensable for mitochondrial function.


2010 ◽  
Vol 21 (17) ◽  
pp. 3054-3069 ◽  
Author(s):  
Ji-Young Youn ◽  
Helena Friesen ◽  
Takuma Kishimoto ◽  
William M. Henne ◽  
Christoph F. Kurat ◽  
...  

BAR domains are protein modules that bind to membranes and promote membrane curvature. One type of BAR domain, the N-BAR domain, contains an additional N-terminal amphipathic helix, which contributes to membrane-binding and bending activities. The only known N-BAR-domain proteins in the budding yeast Saccharomyces cerevisiae, Rvs161 and Rvs167, are required for endocytosis. We have explored the mechanism of N-BAR-domain function in the endocytosis process using a combined biochemical and genetic approach. We show that the purified Rvs161–Rvs167 complex binds to liposomes in a curvature-independent manner and promotes tubule formation in vitro. Consistent with the known role of BAR domain polymerization in membrane bending, we found that Rvs167 BAR domains interact with each other at cortical actin patches in vivo. To characterize N-BAR-domain function in endocytosis, we constructed yeast strains harboring changes in conserved residues in the Rvs161 and Rvs167 N-BAR domains. In vivo analysis of the rvs endocytosis mutants suggests that Rvs proteins are initially recruited to sites of endocytosis through their membrane-binding ability. We show that inappropriate regulation of complex sphingolipid and phosphoinositide levels in the membrane can impinge on Rvs function, highlighting the relationship between membrane components and N-BAR-domain proteins in vivo.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Md. Iqbal Mahmood ◽  
Hiroshi Noguchi ◽  
Kei-ichi Okazaki

Abstract F-Bin/Amphiphysin/Rvs (F-BAR) domain proteins play essential roles in biological processes that involve membrane remodelling, such as endocytosis and exocytosis. It has been shown that such proteins transform the lipid membrane into tubes. Notably, Pacsin1 from the Pacsin/Syndapin subfamily has the ability to transform the membrane into various morphologies: striated tubes, featureless wide and thin tubes, and pearling vesicles. The molecular mechanism of this interesting ability remains elusive. In this study, we performed all-atom (AA) and coarse-grained (CG) molecular dynamics simulations to investigate the curvature induction and sensing mechanisms of Pacsin1 on a membrane. From AA simulations, we show that Pacsin1 has internal structural flexibility. In CG simulations with parameters tuned from the AA simulations, spontaneous assembly of two Pacsin1 dimers through lateral interaction is observed. Based on the complex structure, we show that the regularly assembled Pacsin1 dimers bend a tensionless membrane. We also show that a single Pacsin1 dimer senses the membrane curvature, binding to a buckled membrane with a preferred curvature. These results provide molecular insights into polymorphic membrane remodelling.


2020 ◽  
Author(s):  
Adip Jhaveri ◽  
Dhruw Maisuria ◽  
Matthew Varga ◽  
Dariush Mohammadyani ◽  
Margaret E Johnson

AbstractNearly all proteins interact specifically with other proteins, often forming reversible bound structures whose stability is critical to function. Proteins with BAR domains function to bind to, bend, and remodel biological membranes, where the dimerization of BAR domains is a key step in this function. Here we characterize the binding thermodynamics of homodimerization between the LSP1 BAR domain proteins in solution, using Molecular Dynamics (MD) simulations. By combining the MARTINI coarse-grained protein models with enhanced sampling through metadynamics, we construct a two-dimensional free energy surface quantifying the bound versus unbound ensembles as a function of two distance variables. Our simulations portray a heterogeneous and extraordinarily stable bound ensemble for these modeled LSP1 proteins. The proper crystal structure dimer has a large hydrophobic interface that is part of a stable minima on the free energy surface, which is enthalpically the minima of all bound structures. However, we also find several other stable nonspecific dimers with comparable free energies to the specific dimer. Through structure-based clustering of these bound structures, we find that some of these ‘nonspecific’ contacts involve extended tail regions that help stabilize the higher-order oligomers formed by BAR-domains, contacts that are separated from the homodimer interface. We find that the known membrane-binding residues of the LSP1 proteins rarely participate in any of the bound interfaces, but that both patches of residues are aligned to interact with the membrane in the specific dimer. Hence, we would expect a strong selection of the specific dimer in binding to the membrane. The effect of a 100mM NaCl buffer reduces the relative stability of nonspecific dimers compared to the specific dimer, indicating that it would help prevent aggregation of the proteins. With these results, we provide the first free energy characterization of interaction pathways in this important class of membrane sculpting domains, revealing a variety of interfacial contacts outside of the specific dimer that may help stabilize its oligomeric assemblies.


Acta Naturae ◽  
2016 ◽  
Vol 8 (4) ◽  
pp. 60-69 ◽  
Author(s):  
T. B. Stanishneva-Konovalova ◽  
N. I Derkacheva ◽  
S. V. Polevova ◽  
O. S. Sokolova

Many cellular processes are associated with membrane remodeling. The BAR domain protein family plays a key role in the formation and detection of local membrane curvatures and in attracting other proteins, including the regulators of actin dynamics. Based on their structural and phylogenetic properties, BAR domains are divided into several groups which affect membrane in various ways and perform different functions in cells. However, recent studies have uncovered evidence of functional differences even within the same group. This review discusses the principles underlying the interactions of different groups of BAR domains, and their individual representatives, with membranes.


2020 ◽  
Author(s):  
Binod Nepal ◽  
Aliasghar Sepehri ◽  
Themis Lazaridis

AbstractThe membrane sculpting ability of BAR domains has been attributed to the intrinsic curvature of their banana-shaped dimeric structure. However, there is often a mismatch between this intrinsic curvature and the diameter of the membrane tubules generated. I-BAR domains have been especially mysterious: they are almost flat but generate high negative membrane curvature. Here, we use atomistic implicit-solvent computer modeling to show that the membrane bending of the IRSP53 I-BAR domain is dictated by its higher oligomeric structure, whose curvature is completely unrelated to the intrinsic curvature of the dimer. Two other I-BARs gave similar results, whereas a flat F-BAR sheet developed a concave membrane binding interface, consistent with its observed positive membrane curvature generation. Laterally interacting helical spirals of I-BAR dimers on tube interiors are stable and have an enhanced binding energy that is sufficient for membrane bending to experimentally observed tubule diameters at a reasonable surface density.


2018 ◽  
Vol 115 (37) ◽  
pp. E8595-E8603 ◽  
Author(s):  
Jesper J. Madsen ◽  
John M. A. Grime ◽  
Jeremy S. Rossman ◽  
Gregory A. Voth

The influenza A matrix 2 (M2) transmembrane protein facilitates virion release from the infected host cell. In particular, M2 plays a role in the induction of membrane curvature and/or in the scission process whereby the envelope is cut upon virion release. Here we show using coarse-grained computer simulations that various M2 assembly geometries emerge due to an entropic driving force, resulting in compact clusters or linearly extended aggregates as a direct consequence of the lateral membrane stresses. Conditions under which these protein assemblies will cause the lipid membrane to curve are explored, and we predict that a critical cluster size is required for this to happen. We go on to demonstrate that under the stress conditions taking place in the cellular membrane as it undergoes large-scale membrane remodeling, the M2 protein will, in principle, be able to both contribute to curvature induction and sense curvature to line up in manifolds where local membrane line tension is high. M2 is found to exhibit linactant behavior in liquid-disordered–liquid-ordered phase-separated lipid mixtures and to be excluded from the liquid-ordered phase, in near-quantitative agreement with experimental observations. Our findings support a role for M2 in membrane remodeling during influenza viral budding both as an inducer and a sensor of membrane curvature, and they suggest a mechanism by which localization of M2 can occur as the virion assembles and releases from the host cell, independent of how the membrane curvature is produced.


2011 ◽  
Vol 100 (3) ◽  
pp. 405a
Author(s):  
Haosheng Cui ◽  
Edward Lyman ◽  
Gregory A. Voth

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1441
Author(s):  
Moritz P. K. Frewein ◽  
Milka Doktorova ◽  
Frederick A. Heberle ◽  
Haden L. Scott ◽  
Enrico F. Semeraro ◽  
...  

We addressed the frequent occurrence of mixed-chain lipids in biological membranes and their impact on membrane structure by studying several chain-asymmetric phosphatidylcholines and the highly asymmetric milk sphingomyelin. Specifically, we report trans-membrane structures of the corresponding fluid lamellar phases using small-angle X-ray and neutron scattering, which were jointly analyzed in terms of a membrane composition-specific model, including a headgroup hydration shell. Focusing on terminal methyl groups at the bilayer center, we found a linear relation between hydrocarbon chain length mismatch and the methyl-overlap for phosphatidylcholines, and a non-negligible impact of the glycerol backbone-tilting, letting the sn1-chain penetrate deeper into the opposing leaflet by half a CH2 group. That is, penetration-depth differences due to the ester-linked hydrocarbons at the glycerol backbone, previously reported for gel phase structures, also extend to the more relevant physiological fluid phase, but are significantly reduced. Moreover, milk sphingomyelin was found to follow the same linear relationship suggesting a similar tilt of the sphingosine backbone. Complementarily performed molecular dynamics simulations revealed that there is always a part of the lipid tails bending back, even if there is a high interdigitation with the opposing chains. The extent of this back-bending was similar to that in chain symmetric bilayers. For both cases of adaptation to chain length mismatch, chain-asymmetry has a large impact on hydrocarbon chain ordering, inducing disorder in the longer of the two hydrocarbons.


Sign in / Sign up

Export Citation Format

Share Document