scholarly journals A split methyl halide transferase AND gate that reports by synthesizing an indicator gas

2020 ◽  
Author(s):  
Emily M. Fulk ◽  
Dongkuk Huh ◽  
Joshua T. Atkinson ◽  
Margaret Lie ◽  
Caroline A. Masiello ◽  
...  

AbstractIt is challenging to detect microbial reactions in highly opaque or autofluorescent environments like soils, seawater, and wastewater. To develop a simple approach for monitoring post-translational reactions within microbes situated in environmental matrices, we designed a methyl halide transferase (MHT) fragment complementation assay that reports by synthesizing an indicator gas. We show that backbone fission within regions of high sequence variability in the Rossmann-fold domain yields split MHT (sMHT) AND gates whose fragments cooperatively associate to synthesize CH3Br. Additionally, we identify a sMHT whose fragments require fusion to pairs of interacting partner proteins for maximal activity. We also show that sMHT fragments fused to FKBP12 and the FKBP-rapamycin binding domain of mTOR display significantly enhanced CH3Br production in the presence of rapamycin. This gas production is reversed in the presence of the competitive inhibitor of FKBP12/FKPB dimerization, indicating that sMHT is a reversible reporter of post-translational reactions. This sMHT represents the first genetic AND gate that can report on protein-protein interactions via an indicator gas. Because indicator gases can be measured in the headspaces of complex environmental samples, this protein fragment complementation assay should be useful for monitoring the dynamics of diverse molecular interactions within microbes situated in hard-to-image marine and terrestrial matrices.

2016 ◽  
Vol 16 (3) ◽  
pp. 329-345 ◽  
Author(s):  
Petra Kolkhof ◽  
Michael Werthebach ◽  
Anna van de Venn ◽  
Gereon Poschmann ◽  
Lili Chen ◽  
...  

2020 ◽  
Vol 21 (6) ◽  
pp. 598-610
Author(s):  
Tianwen Wang ◽  
Ningning Yang ◽  
Chen Liang ◽  
Hongjv Xu ◽  
Yafei An ◽  
...  

Proteins are the most critical executive molecules by responding to the instructions stored in the genetic materials in any form of life. More frequently, proteins do their jobs by acting as a roleplayer that interacts with other protein(s), which is more evident when the function of a protein is examined in the real context of a cell. Identifying the interactions between (or amongst) proteins is very crucial for the biochemistry investigation of an individual protein and for the attempts aiming to draw a holo-picture for the interacting members at the scale of proteomics (or protein-protein interactions mapping). Here, we introduced the currently available reporting systems that can be used to probe the interaction between candidate protein pairs based on the fragment complementation of some particular proteins. Emphasis was put on the principles and details of experimental design. These systems are dihydrofolate reductase (DHFR), β-lactamase, tobacco etch virus (TEV) protease, luciferase, β- galactosidase, GAL4, horseradish peroxidase (HRP), focal adhesion kinase (FAK), green fluorescent protein (GFP), and ubiquitin.


2001 ◽  
Vol 276 (15) ◽  
pp. 12128-12134 ◽  
Author(s):  
Robynn V. Schillace ◽  
James W. Voltz ◽  
Alistair T. R. Sim ◽  
Shirish Shenolikar ◽  
John D. Scott

The phosphorylation status of cellular proteins is controlled by the opposing actions of protein kinases and phosphatases. Compartmentalization of these enzymes is critical for spatial and temporal control of these phosphorylation/dephosphorylation events. We previously reported that a 220-kDa A-kinase anchoring protein (AKAP220) coordinates the location of the cAMP-dependent protein kinase (PKA) and the type 1 protein phosphatase catalytic subunit (PP1c) (Schillace, R. V., and Scott, J. D. (1999)Curr. Biol.9, 321–324). We now demonstrate that an AKAP220 fragment is a competitive inhibitor of PP1c activity (Ki= 2.9 ± 0.7 μm). Mapping studies and activity measurements indicate that several protein-protein interactions act synergistically to inhibit PP1. A consensus targeting motif, between residues 1195 and 1198 (Lys-Val-Gln-Phe), binds but does not affect enzyme activity, whereas determinants between residues 1711 and 1901 inhibit the phosphatase. Analysis of truncated PP1c and chimeric PP1/2A catalytic subunits suggests that AKAP220 inhibits the phosphatase in a manner distinct from all known PP1 inhibitors and toxins. Intermolecular interactions within the AKAP220 signaling complex further contribute to PP1 inhibition as addition of the PKA regulatory subunit (RII) enhances phosphatase inhibition. These experiments indicate that regulation of PP1 activity by AKAP220 involves a complex network of intra- and intermolecular interactions.


Sign in / Sign up

Export Citation Format

Share Document