scholarly journals Population genomics of North American northern pike: variation and sex-specific signals from a chromosome-level, long read genome assembly

2020 ◽  
Author(s):  
Hollie A Johnson ◽  
Eric B Rondeau ◽  
David R Minkley ◽  
Jong S Leong ◽  
Joanne Whitehead ◽  
...  

AbstractWe present a chromosome-level, long-read genome assembly as a reference for northern pike (Esox lucius) where 97.5% of the genome is chromosome-anchored and N50 falls at 37.5 Mb. Whole-genome resequencing was genotyped using this assembly for 47 northern pike representing six North American populations from Alaska to New Jersey. We discovered that a disproportionate frequency of genetic polymorphism exists among populations east and west of the North American Continental Divide (NACD), indicating reproductive isolation across this barrier. Genome-wide analysis of heterozygous SNP density revealed a remarkable lack of genetic variation with 1 polymorphic site every 6.3kb in the Yukon River drainage and one every 16.5kb east of the NACD. Observed heterozygosity (Ho), nucleotide diversity (π), and Tajima’s D are depressed in populations east of the NACD (east vs. west: Ho: 0.092 vs 0.31; π: 0.092 vs 0.28; Tajima’s D: -1.61 vs -0.47). We confirm the presence of the master sex determining (MSD) gene, amhby, in the Yukon River drainage and in an invasive population in British Columbia and confirm its absence in populations east of the NACD. We also describe an Alaskan population where amhby is present but not associated with male gender determination. Our results support that northern pike originally colonized North America through Beringia, that Alaska provided an unglaciated refugium for northern pike during the last ice age, and southeast of the NACD was colonized by a small founding population(s) that lost amhby.

2019 ◽  
Author(s):  
Ryan Bracewell ◽  
Anita Tran ◽  
Kamalakar Chatla ◽  
Doris Bachtrog

ABSTRACTThe Drosophila obscura species group is one of the most studied clades of Drosophila and harbors multiple distinct karyotypes. Here we present a de novo genome assembly and annotation of D. bifasciata, a species which represents an important subgroup for which no high-quality chromosome-level genome assembly currently exists. We combined long-read sequencing (Nanopore) and Hi-C scaffolding to achieve a highly contiguous genome assembly approximately 193Mb in size, with repetitive elements constituting 30.1% of the total length. Drosophila bifasciata harbors four large metacentric chromosomes and the small dot, and our assembly contains each chromosome in a single scaffold, including the highly repetitive pericentromere, which were largely composed of Jockey and Gypsy transposable elements. We annotated a total of 12,821 protein-coding genes and comparisons of synteny with D. athabasca orthologs show that the large metacentric pericentromeric regions of multiple chromosomes are conserved between these species. Importantly, Muller A (X chromosome) was found to be metacentric in D. bifasciata and the pericentromeric region appears homologous to the pericentromeric region of the fused Muller A-AD (XL and XR) of pseudoobscura/affinis subgroup species. Our finding suggests a metacentric ancestral X fused to a telocentric Muller D and created the large neo-X (Muller A-AD) chromosome ∼15 MYA. We also confirm the fusion of Muller C and D in D. bifasciata and show that it likely involved a centromere-centromere fusion.


2020 ◽  
Vol 10 (3) ◽  
pp. 891-897 ◽  
Author(s):  
Ryan Bracewell ◽  
Anita Tran ◽  
Kamalakar Chatla ◽  
Doris Bachtrog

The Drosophila obscura species group is one of the most studied clades of Drosophila and harbors multiple distinct karyotypes. Here we present a de novo genome assembly and annotation of D. bifasciata, a species which represents an important subgroup for which no high-quality chromosome-level genome assembly currently exists. We combined long-read sequencing (Nanopore) and Hi-C scaffolding to achieve a highly contiguous genome assembly approximately 193 Mb in size, with repetitive elements constituting 30.1% of the total length. Drosophila bifasciata harbors four large metacentric chromosomes and the small dot, and our assembly contains each chromosome in a single scaffold, including the highly repetitive pericentromeres, which were largely composed of Jockey and Gypsy transposable elements. We annotated a total of 12,821 protein-coding genes and comparisons of synteny with D. athabasca orthologs show that the large metacentric pericentromeric regions of multiple chromosomes are conserved between these species. Importantly, Muller A (X chromosome) was found to be metacentric in D. bifasciata and the pericentromeric region appears homologous to the pericentromeric region of the fused Muller A-AD (XL and XR) of pseudoobscura/affinis subgroup species. Our finding suggests a metacentric ancestral X fused to a telocentric Muller D and created the large neo-X (Muller A-AD) chromosome ∼15 MYA. We also confirm the fusion of Muller C and D in D. bifasciata and show that it likely involved a centromere-centromere fusion.


2020 ◽  
Vol 10 (7) ◽  
pp. 2179-2183 ◽  
Author(s):  
Stefan Prost ◽  
Malte Petersen ◽  
Martin Grethlein ◽  
Sarah Joy Hahn ◽  
Nina Kuschik-Maczollek ◽  
...  

Ever decreasing costs along with advances in sequencing and library preparation technologies enable even small research groups to generate chromosome-level assemblies today. Here we report the generation of an improved chromosome-level assembly for the Siamese fighting fish (Betta splendens) that was carried out during a practical university master’s course. The Siamese fighting fish is a popular aquarium fish and an emerging model species for research on aggressive behavior. We updated the current genome assembly by generating a new long-read nanopore-based assembly with subsequent scaffolding to chromosome-level using previously published Hi-C data. The use of ∼35x nanopore-based long-read data sequenced on a MinION platform (Oxford Nanopore Technologies) allowed us to generate a baseline assembly of only 1,276 contigs with a contig N50 of 2.1 Mbp, and a total length of 441 Mbp. Scaffolding using the Hi-C data resulted in 109 scaffolds with a scaffold N50 of 20.7 Mbp. More than 99% of the assembly is comprised in 21 scaffolds. The assembly showed the presence of 96.1% complete BUSCO genes from the Actinopterygii dataset indicating a high quality of the assembly. We present an improved full chromosome-level assembly of the Siamese fighting fish generated during a university master’s course. The use of ∼35× long-read nanopore data drastically improved the baseline assembly in terms of continuity. We show that relatively in-expensive high-throughput sequencing technologies such as the long-read MinION sequencing platform can be used in educational settings allowing the students to gain practical skills in modern genomics and generate high quality results that benefit downstream research projects.


Diversity ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 144 ◽  
Author(s):  
Laís Coelho ◽  
Lukas Musher ◽  
Joel Cracraft

Current generation high-throughput sequencing technology has facilitated the generation of more genomic-scale data than ever before, thus greatly improving our understanding of avian biology across a range of disciplines. Recent developments in linked-read sequencing (Chromium 10×) and reference-based whole-genome assembly offer an exciting prospect of more accessible chromosome-level genome sequencing in the near future. We sequenced and assembled a genome of the Hairy-crested Antbird (Rhegmatorhina melanosticta), which represents the first publicly available genome for any antbird (Thamnophilidae). Our objectives were to (1) assemble scaffolds to chromosome level based on multiple reference genomes, and report on differences relative to other genomes, (2) assess genome completeness and compare content to other related genomes, and (3) assess the suitability of linked-read sequencing technology for future studies in comparative phylogenomics and population genomics studies. Our R. melanosticta assembly was both highly contiguous (de novo scaffold N50 = 3.3 Mb, reference based N50 = 53.3 Mb) and relatively complete (contained close to 90% of evolutionarily conserved single-copy avian genes and known tetrapod ultraconserved elements). The high contiguity and completeness of this assembly enabled the genome to be successfully mapped to the chromosome level, which uncovered a consistent structural difference between R. melanosticta and other avian genomes. Our results are consistent with the observation that avian genomes are structurally conserved. Additionally, our results demonstrate the utility of linked-read sequencing for non-model genomics. Finally, we demonstrate the value of our R. melanosticta genome for future researchers by mapping reduced representation sequencing data, and by accurately reconstructing the phylogenetic relationships among a sample of thamnophilid species.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 289
Author(s):  
Xiao Ma ◽  
Jeanine L. Olsen ◽  
Thorsten B.H. Reusch ◽  
Gabriele Procaccini ◽  
Dave Kudrna ◽  
...  

Background: Seagrasses (Alismatales) are the only fully marine angiosperms. Zostera marina (eelgrass) plays a crucial role in the functioning of coastal marine ecosystems and global carbon sequestration. It is the most widely studied seagrass and has become a marine model system for exploring adaptation under rapid climate change. The original draft genome (v.1.0) of the seagrass Z. marina (L.) was based on a combination of Illumina mate-pair libraries and fosmid-ends. A total of 25.55 Gb of Illumina and 0.14 Gb of Sanger sequence was obtained representing 47.7× genomic coverage. The assembly resulted in ~2000 unordered scaffolds (L50 of 486 Kb), a final genome assembly size of 203MB, 20,450 protein coding genes and 63% TE content. Here, we present an upgraded chromosome-scale genome assembly and compare v.1.0 and the new v.3.1, reconfirming previous results from Olsen et al. (2016), as well as pointing out new findings.   Methods: The same high molecular weight DNA used in the original sequencing of the Finnish clone was used. A high-quality reference genome was assembled with the MECAT assembly pipeline combining PacBio long-read sequencing and Hi-C scaffolding.  Results: In total, 75.97 Gb PacBio data was produced. The final assembly comprises six pseudo-chromosomes and 304 unanchored scaffolds with a total length of 260.5Mb and an N50 of 34.6 MB, showing high contiguity and few gaps (~0.5%). 21,483 protein-encoding genes are annotated in this assembly, of which 20,665 (96.2%) obtained at least one functional assignment based on similarity to known proteins.  Conclusions: As an important marine angiosperm, the improved Z. marina genome assembly will further assist evolutionary, ecological, and comparative genomics at the chromosome level. The new genome assembly will further our understanding into the structural and physiological adaptations from land to marine life.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Nadège Guiglielmoni ◽  
Antoine Houtain ◽  
Alessandro Derzelle ◽  
Karine Van Doninck ◽  
Jean-François Flot

Abstract Background Long-read sequencing is revolutionizing genome assembly: as PacBio and Nanopore technologies become more accessible in technicity and in cost, long-read assemblers flourish and are starting to deliver chromosome-level assemblies. However, these long reads are usually error-prone, making the generation of a haploid reference out of a diploid genome a difficult enterprise. Failure to properly collapse haplotypes results in fragmented and structurally incorrect assemblies and wreaks havoc on orthology inference pipelines, yet this serious issue is rarely acknowledged and dealt with in genomic projects, and an independent, comparative benchmark of the capacity of assemblers and post-processing tools to properly collapse or purge haplotypes is still lacking. Results We tested different assembly strategies on the genome of the rotifer Adineta vaga, a non-model organism for which high coverages of both PacBio and Nanopore reads were available. The assemblers we tested (Canu, Flye, NextDenovo, Ra, Raven, Shasta and wtdbg2) exhibited strikingly different behaviors when dealing with highly heterozygous regions, resulting in variable amounts of uncollapsed haplotypes. Filtering reads generally improved haploid assemblies, and we also benchmarked three post-processing tools aimed at detecting and purging uncollapsed haplotypes in long-read assemblies: HaploMerger2, purge_haplotigs and purge_dups. Conclusions We provide a thorough evaluation of popular assemblers on a non-model eukaryote genome with variable levels of heterozygosity. Our study highlights several strategies using pre and post-processing approaches to generate haploid assemblies with high continuity and completeness. This benchmark will help users to improve haploid assemblies of non-model organisms, and evaluate the quality of their own assemblies.


2020 ◽  
Author(s):  
Stefan Prost ◽  
Malte Petersen ◽  
Martin Grethlein ◽  
Sarah Joy Hahn ◽  
Nina Kuschik-Maczollek ◽  
...  

AbstractBackgroundEver decreasing costs along with advances in sequencing and library preparation technologies enable even small research groups to generate chromosome-level assemblies today. Here we report the generation of an improved chromosome-level assembly for the Siamese fighting fish (Betta splendens) that was carried out during a practical university Master’s course. The Siamese fighting fish is a popular aquarium fish and an emerging model species for research on aggressive behaviour. We updated the current genome assembly by generating a new long-read nanopore-based assembly with subsequent scaffolding to chromosome-level using previously published HiC data.FindingsThe use of nanopore-based long-read data sequenced on a MinION platform (Oxford Nanopore Technologies) allowed us to generate a baseline assembly of only 1,276 contigs with a contig N50 of 2.1 Mbp, and a total length of 441 Mbp. Scaffolding using previously published HiC data resulted in 109 scaffolds with a scaffold N50 of 20.7 Mbp. More than 99% of the assembly is comprised in 21 scaffolds. The assembly showed the presence of 95.8% complete BUSCO genes from the Actinopterygii dataset indicating a high quality of the assembly.ConclusionWe present an improved full chromosome-level assembly of the Siamese fighting fish generated during a university Master’s course. The use of ~35× long-read nanopore data drastically improved the baseline assembly in terms of continuity. We show that relatively in-expensive high-throughput sequencing technologies such as the long-read MinION sequencing platform can be used in educational settings allowing the students to gain practical skills in modern genomics and generate high quality results that benefit downstream research projects.


2021 ◽  
Author(s):  
Thomas W Woehner ◽  
Ofere Francis Emeriewen ◽  
Alexander Wittenberg ◽  
Harrie Schneiders ◽  
Ilse Vrijenhoek ◽  
...  

Background: Cherries are stone fruits and belong to the economically important plant family of Rosaceae with worldwide cultivation of different species. The ground cherry, Prunus fruticosa Pall. is one ancestor of cultivated sour cherry, an important tetraploid cherry species. Here, we present a long read chromosome-level draft genome assembly and related plastid sequences using the Oxford Nanopore Technology PromethION platform and R10.3 pore type. Finding: The final assemblies obtained from 117.3 Gb cleaned reads representing 97x coverage of expected 1.2 Gb tetraploid (2n=4x=32) and 0.3 Gb haploid (1n=8) genome sequence of P. fruticosa were calculated. The N50 contig length ranged between 0.3 and 0.5 Mb with the longest contig being ~6 Mb. BUSCO estimated a completeness between 98.7 % for the 4n and 96.1 % for the 1n datasets. Using a homology and reference based scaffolding method, we generated a final consensus genome sequence of 366 Mb comprising eight chromosomes. The N50 scaffold was ~44 Mb with the longest chromosome being 66.5 Mb. The repeat content was estimated to ~190 Mb (52 %) and 58,880 protein-coding genes were annotated. The chloroplast and mitochondrial genomes were 158,217 bp and 383,281 bp long, which is in accordance with previously published plastid sequences. Conclusion: This is the first report of the genome of ground cherry (P. fruticosa) sequenced by long read technology only. The datasets obtained from this study provide a foundation for future breeding, molecular and evolutionary analysis in Prunus studies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Min Tang ◽  
Suqun He ◽  
Xun Gong ◽  
Peng Lü ◽  
Rehab H. Taha ◽  
...  

The reference genomes of Bombyx mori (B. mori), Silkworm Knowledge-based database (SilkDB) and SilkBase, have served as the gold standard for nearly two decades. Their use has fundamentally shaped model organisms and accelerated relevant studies on lepidoptera. However, the current reference genomes of B. mori do not accurately represent the full set of genes for any single strain. As new genome-wide sequencing technologies have emerged and the cost of high-throughput sequencing technology has fallen, it is now possible for standard laboratories to perform full-genome assembly for specific strains. Here we present a high-quality de novo chromosome-level genome assembly of a single B. mori with nuclear polyhedrosis virus (BmNPV) resistance through the integration of PacBio long-read sequencing, Illumina short-read sequencing, and Hi-C sequencing. In addition, regular bioinformatics analyses, such as gene family, phylogenetic, and divergence analyses, were performed. The sample was from our unique B. mori species (NB), which has strong inborn resistance to BmNPV. Our genome assembly showed good collinearity with SilkDB and SilkBase and particular regions. To the best of our knowledge, this is the first genome assembly with BmNPV resistance, which should be a more accurate insect model for resistance studies.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mathilde Paris ◽  
Roxane Boyer ◽  
Rita Jaenichen ◽  
Jochen Wolf ◽  
Marianthi Karageorgi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document