scholarly journals In vivo phage display: identification of organ-specific peptides using deep sequencing and differential profiling across tissues

2020 ◽  
Author(s):  
Karlis Pleiko ◽  
Kristina Põšnograjeva ◽  
Maarja Haugas ◽  
Päärn Paiste ◽  
Allan Tobi ◽  
...  

ABSTRACTIn vivo phage display is widely used for identification of organ- or disease-specific homing peptides. However, the current in vivo phage biopanning approaches fail to assess biodistribution of specific peptide phages across tissues during the screen, thus necessitating laborious and time-consuming post-screening validation studies on individual peptide phages. Here, we adopted bioinformatics tools used for RNA sequencing for analysis of high throughput sequencing (HTS) data to estimate the representation of individual peptides during biopanning in vivo. The data from in vivo phage screen were analyzed using differential binding – relative representation of each peptide in the target organ vs. in a panel of control organs. Application of this approach in a model study using low-diversity peptide T7 phage library with spiked-in brain homing phage, demonstrated brain-specific differential binding of brain homing phage and resulted in identification of novel lung and brain specific homing peptides. Our study provides a broadly applicable approach to streamline in vivo peptide phage biopanning and to increase its reproducibility and success rate.Graphic abstractIn vivo phage display using differential binding approach

Viruses ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 988 ◽  
Author(s):  
James W. Gillespie ◽  
Liping Yang ◽  
Laura Maria De Plano ◽  
Murray A. Stackhouse ◽  
Valery A. Petrenko

Peptide-displayed phage libraries are billion-clone collections of diverse chimeric bacteriophage particles, decorated by genetically fused peptides built from a random combination of natural amino acids. Studying the molecular evolution of peptide-displayed libraries in mammalian model systems, using in vivo phage display techniques, can provide invaluable knowledge about the underlying physiology of the vasculature system, allow recognition of organ- and tissue-specific networks of protein–protein interactions, and provide ligands for targeted diagnostics and therapeutics. Recently, we discovered that landscape phage libraries, a specific type of multivalent peptide phage display library, expose on their surface comprehensive collections of elementary binding units (EBUs), which can form short linear motifs (SLiMs) that interact with functional domains of physiologically relevant proteins. Because of their unique structural and functional features, landscape phages can use an alternative mechanism of directed molecular evolution, i.e., combinatorial avidity selection. These discoveries fueled our interest in revisiting the in vivo evolution of phage displayed libraries using another format of display, i.e., landscape phages. In this study, we monitored the evolution of a landscape phage library in a mouse model with and without an implanted human breast cancer tumor xenograft. As expected, the multivalent architecture of landscape phage displayed proteins provided strong tissue selectivity and resulted in a huge diversity of tissue penetrating, chimeric phage particles. We identified several types of EBU interactions that evolved during the course of tissue distribution, which included interactions of EBUs with all tissue types, those EBUs that interacted selectively with specific organs or tissues with shared gene expression profiles or functionalities, and other EBUs that interacted in a tissue-selective manner. We demonstrated that landscape phage libraries are a rich collection of unique nanobioparticles that can be used to identify functional organ and tissue-binding elements after the evolution of a phage display library in vivo.


2005 ◽  
Vol 103 (2) ◽  
pp. 407-412 ◽  
Author(s):  
P. Valadon ◽  
J. D. Garnett ◽  
J. E. Testa ◽  
M. Bauerle ◽  
P. Oh ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Keisuke Fukunaga ◽  
Masumi Taki

Phage display technology is undoubtedly a powerful tool for affinity selection of target-specific peptide. Commercially available premade phage libraries allow us to take screening in the easiest way. On the other hand, construction of a custom phage library seems to be inaccessible, because several practical tips are absent in instructions. This paper focuses on what should be born in mind for beginners using commercially available cloning kits (Ph.D. with type 3 vector and T7Select systems for M13 and T7 phage, respectively). In the M13 system, Pro or a basic amino acid (especially, Arg) should be avoided at the N-terminus of peptide fused to gp3. In both systems, peptides containing odd number(s) of Cys should be designed with caution. Also, DNA sequencing of a constructed library before biopanning is highly recommended for finding unexpected bias.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Harvinder Talwar ◽  
Samer Najeeb Hanoudi ◽  
Andreea Geamanu ◽  
Dana Kissner ◽  
Sorin Draghici ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Woo Seok Kim ◽  
Sungcheol Hong ◽  
Milenka Gamero ◽  
Vivekanand Jeevakumar ◽  
Clay M. Smithhart ◽  
...  

AbstractThe vagus nerve supports diverse autonomic functions and behaviors important for health and survival. To understand how specific components of the vagus contribute to behaviors and long-term physiological effects, it is critical to modulate their activity with anatomical specificity in awake, freely behaving conditions using reliable methods. Here, we introduce an organ-specific scalable, multimodal, wireless optoelectronic device for precise and chronic optogenetic manipulations in vivo. When combined with an advanced, coil-antenna system and a multiplexing strategy for powering 8 individual homecages using a single RF transmitter, the proposed wireless telemetry enables low cost, high-throughput, and precise functional mapping of peripheral neural circuits, including long-term behavioral and physiological measurements. Deployment of these technologies reveals an unexpected role for stomach, non-stretch vagal sensory fibers in suppressing appetite and demonstrates the durability of the miniature wireless device inside harsh gastric conditions.


2021 ◽  
Vol 22 (11) ◽  
pp. 5513
Author(s):  
Sander Plessers ◽  
Vincent Van Deuren ◽  
Rob Lavigne ◽  
Johan Robben

The combination of phage display technology with high-throughput sequencing enables in-depth analysis of library diversity and selection-driven dynamics. We applied short-read sequencing of the mutagenized region on focused display libraries of two homologous nucleic acid modification eraser proteins—AlkB and FTO—biopanned against methylated DNA. This revealed enriched genotypes with small indels and concomitant doubtful amino acid motifs within the FTO library. Nanopore sequencing of the entire display vector showed additional enrichment of large deletions overlooked by region-specific sequencing, and further impacted the interpretation of the obtained amino acid motifs. We could attribute enrichment of these corrupted clones to amplification bias due to arduous FTO display slowing down host cell growth as well as phage production. This amplification bias appeared to be stronger than affinity-based target selection. Recommendations are provided for proper sequence analysis of phage display data, which can improve motive discovery in libraries of proteins that are difficult to display.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jayant V. Rajan ◽  
Michael McCracken ◽  
Caleigh Mandel-Brehm ◽  
Greg Gromowski ◽  
Simon Pollett ◽  
...  

AbstractNatural dengue virus (DENV) infections occur by mosquito bite but how the inoculation route affects the humoral immune response is unknown. We serologically profiled 20 non-human primates (NHP) from a prior study of DENV1 infection where animals were inoculated by mosquito (N = 10) or subcutaneous injection (N = 10). Using a comprehensive, densely tiled and highly redundant pan-flavivirus programmable phage library containing 91,562 overlapping 62 amino acid peptides, we produced a high-resolution map of linear peptide sequences enriched during DENV seroconversion. Profiles in mosquito-inoculated and subcutaneously-inoculated animals were similar up to 90 days after primary infection, but diverged at 1 year with differences in sero-reactivity in the Envelope (E; residues 215–406; p < 0.08), and Nonstructural-3 (NS3; residues 549–615; p < 0.05) proteins in mosquito-inoculated versus subcutaneously-inoculated animals. Within the E protein, residues 339–384 in domain III accounted for > 99% of the observed sero-reactivity difference. Antibody breadth did not vary by mode of inoculation. The differential reactivity to E domain III seen by phage display validated orthogonally by ELISA, but did not correlate with late neutralization titers. Serological profiling of humoral immune responses to DENV infection in NHP by programmable phage display demonstrated durable differences in sero-reactivity by route of inoculation.


2021 ◽  
Vol 492 ◽  
pp. 112990
Author(s):  
Jothivel Kumarasamy ◽  
Samar Kumar Ghorui ◽  
Chandrakala Gholve ◽  
Bharti Jain ◽  
Yogesh Dhekale ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document