scholarly journals Connectivity patterns of task-specific brain networks allow individual prediction of cognitive symptom dimension of schizophrenia and link to molecular architecture

2020 ◽  
Author(s):  
Ji Chen ◽  
Veronika I. Müller ◽  
Juergen Dukart ◽  
Felix Hoffstaedter ◽  
Justin T. Baker ◽  
...  

AbstractBackgroundDespite the marked inter-individual variability in the clinical presentation of schizophrenia, it remains unclear the extent to which individual dimensions of psychopathology may be reflected in variability across the collective set of functional brain connections. Here, we address this question using network-based predictive modeling of individual psychopathology along four data-driven symptom dimensions. Follow-up analyses assess the molecular underpinnings of predictive networks by relating them to neurotransmitter-receptor distribution patterns.MethodsWe investigated resting-state fMRI data from 147 schizophrenia patients recruited at seven sites. Individual expression along negative, positive, affective, and cognitive symptom dimensions was predicted using relevance vector machine based on functional connectivity within 17 meta-analytic task-networks following a repeated 10-fold cross-validation and leave-one-site-out analyses. Results were validated in an independent sample. Networks robustly predicting individual symptom dimensions were spatially correlated with density maps of nine receptors/transporters from prior molecular imaging in healthy populations.ResultsTen-fold and leave-one-site-out analyses revealed five predictive network-symptom associations. Connectivity within theory-of-mind, cognitive reappraisal, and mirror neuron networks predicted negative, positive, and affective symptom dimensions, respectively. Cognitive dimension was predicted by theory-of-mind and socio-affective-default networks. Importantly, these predictions generalized to the independent sample. Intriguingly, these two networks were positively associated with D1 dopamine receptor and serotonin reuptake transporter densities as well as dopamine-synthesis-capacity.ConclusionsWe revealed a robust association between intrinsic functional connectivity within networks for socio-affective processes and the cognitive dimension of psychopathology. By investigating the molecular architecture, the present work links dopaminergic and serotonergic systems with the functional topography of brain networks underlying cognitive symptoms in schizophrenia.

2018 ◽  
Vol 29 (10) ◽  
pp. 4208-4222 ◽  
Author(s):  
Yuehua Xu ◽  
Miao Cao ◽  
Xuhong Liao ◽  
Mingrui Xia ◽  
Xindi Wang ◽  
...  

Abstract Individual variability in human brain networks underlies individual differences in cognition and behaviors. However, researchers have not conclusively determined when individual variability patterns of the brain networks emerge and how they develop in the early phase. Here, we employed resting-state functional MRI data and whole-brain functional connectivity analyses in 40 neonates aged around 31–42 postmenstrual weeks to characterize the spatial distribution and development modes of individual variability in the functional network architecture. We observed lower individual variability in primary sensorimotor and visual areas and higher variability in association regions at the third trimester, and these patterns are generally similar to those of adult brains. Different functional systems showed dramatic differences in the development of individual variability, with significant decreases in the sensorimotor network; decreasing trends in the visual, subcortical, and dorsal and ventral attention networks, and limited change in the default mode, frontoparietal and limbic networks. The patterns of individual variability were negatively correlated with the short- to middle-range connection strength/number and this distance constraint was significantly strengthened throughout development. Our findings highlight the development and emergence of individual variability in the functional architecture of the prenatal brain, which may lay network foundations for individual behavioral differences later in life.


2015 ◽  
Vol 6 ◽  
Author(s):  
Roser Sala-Llonch ◽  
David Bartrés-Faz ◽  
Carme Junqué

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Nicola De Pisapia ◽  
Francesca Bacci ◽  
Danielle Parrott ◽  
David Melcher

2019 ◽  
Author(s):  
Aya Kabbara ◽  
Veronique Paban ◽  
Arnaud Weill ◽  
Julien Modolo ◽  
Mahmoud Hassan

AbstractIntroductionIdentifying the neural substrates underlying the personality traits is a topic of great interest. On the other hand, it is now established that the brain is a dynamic networked system which can be studied using functional connectivity techniques. However, much of the current understanding of personality-related differences in functional connectivity has been obtained through the stationary analysis, which does not capture the complex dynamical properties of brain networks.ObjectiveIn this study, we aimed to evaluate the feasibility of using dynamic network measures to predict personality traits.MethodUsing the EEG/MEG source connectivity method combined with a sliding window approach, dynamic functional brain networks were reconstructed from two datasets: 1) Resting state EEG data acquired from 56 subjects. 2) Resting state MEG data provided from the Human Connectome Project. Then, several dynamic functional connectivity metrics were evaluated.ResultsSimilar observations were obtained by the two modalities (EEG and MEG) according to the neuroticism, which showed a negative correlation with the dynamic variability of resting state brain networks. In particular, a significant relationship between this personality trait and the dynamic variability of the temporal lobe regions was observed. Results also revealed that extraversion and openness are positively correlated with the dynamics of the brain networks.ConclusionThese findings highlight the importance of tracking the dynamics of functional brain networks to improve our understanding about the neural substrates of personality.


2018 ◽  
Vol 3 ◽  
pp. 50 ◽  
Author(s):  
Takamitsu Watanabe ◽  
Geraint Rees

Background: Despite accumulated evidence for adult brain plasticity, the temporal relationships between large-scale functional and structural connectivity changes in human brain networks remain unclear. Methods: By analysing a unique richly detailed 19-week longitudinal neuroimaging dataset, we tested whether macroscopic functional connectivity changes lead to the corresponding structural alterations in the adult human brain, and examined whether such time lags between functional and structural connectivity changes are affected by functional differences between different large-scale brain networks. Results: In this single-case study, we report that, compared to attention-related networks, functional connectivity changes in default-mode, fronto-parietal, and sensory-related networks occurred in advance of modulations of the corresponding structural connectivity with significantly longer time lags. In particular, the longest time lags were observed in sensory-related networks. In contrast, such significant temporal differences in connectivity change were not seen in comparisons between anatomically categorised different brain areas, such as frontal and occipital lobes. These observations survived even after multiple validation analyses using different connectivity definitions or using parts of the datasets. Conclusions: Although the current findings should be examined in independent datasets with different demographic background and by experimental manipulation, this single-case study indicates the possibility that plasticity of macroscopic brain networks could be affected by cognitive and perceptual functions implemented in the networks, and implies a hierarchy in the plasticity of functionally different brain systems.


Sign in / Sign up

Export Citation Format

Share Document