Reduced functional connectivity in brain networks underlying paired associates memory encoding in schizophrenia

Author(s):  
Meighen Roes ◽  
Abhijit Chinchani ◽  
Todd S. Woodward
2018 ◽  
Vol 29 (10) ◽  
pp. 4208-4222 ◽  
Author(s):  
Yuehua Xu ◽  
Miao Cao ◽  
Xuhong Liao ◽  
Mingrui Xia ◽  
Xindi Wang ◽  
...  

Abstract Individual variability in human brain networks underlies individual differences in cognition and behaviors. However, researchers have not conclusively determined when individual variability patterns of the brain networks emerge and how they develop in the early phase. Here, we employed resting-state functional MRI data and whole-brain functional connectivity analyses in 40 neonates aged around 31–42 postmenstrual weeks to characterize the spatial distribution and development modes of individual variability in the functional network architecture. We observed lower individual variability in primary sensorimotor and visual areas and higher variability in association regions at the third trimester, and these patterns are generally similar to those of adult brains. Different functional systems showed dramatic differences in the development of individual variability, with significant decreases in the sensorimotor network; decreasing trends in the visual, subcortical, and dorsal and ventral attention networks, and limited change in the default mode, frontoparietal and limbic networks. The patterns of individual variability were negatively correlated with the short- to middle-range connection strength/number and this distance constraint was significantly strengthened throughout development. Our findings highlight the development and emergence of individual variability in the functional architecture of the prenatal brain, which may lay network foundations for individual behavioral differences later in life.


2015 ◽  
Vol 6 ◽  
Author(s):  
Roser Sala-Llonch ◽  
David Bartrés-Faz ◽  
Carme Junqué

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Nicola De Pisapia ◽  
Francesca Bacci ◽  
Danielle Parrott ◽  
David Melcher

2019 ◽  
Author(s):  
Aya Kabbara ◽  
Veronique Paban ◽  
Arnaud Weill ◽  
Julien Modolo ◽  
Mahmoud Hassan

AbstractIntroductionIdentifying the neural substrates underlying the personality traits is a topic of great interest. On the other hand, it is now established that the brain is a dynamic networked system which can be studied using functional connectivity techniques. However, much of the current understanding of personality-related differences in functional connectivity has been obtained through the stationary analysis, which does not capture the complex dynamical properties of brain networks.ObjectiveIn this study, we aimed to evaluate the feasibility of using dynamic network measures to predict personality traits.MethodUsing the EEG/MEG source connectivity method combined with a sliding window approach, dynamic functional brain networks were reconstructed from two datasets: 1) Resting state EEG data acquired from 56 subjects. 2) Resting state MEG data provided from the Human Connectome Project. Then, several dynamic functional connectivity metrics were evaluated.ResultsSimilar observations were obtained by the two modalities (EEG and MEG) according to the neuroticism, which showed a negative correlation with the dynamic variability of resting state brain networks. In particular, a significant relationship between this personality trait and the dynamic variability of the temporal lobe regions was observed. Results also revealed that extraversion and openness are positively correlated with the dynamics of the brain networks.ConclusionThese findings highlight the importance of tracking the dynamics of functional brain networks to improve our understanding about the neural substrates of personality.


2019 ◽  
Author(s):  
Chaitanya Ganne ◽  
Walter Hinds ◽  
James Kragel ◽  
Xiaosong He ◽  
Noah Sideman ◽  
...  

AbstractHigh-frequency gamma activity of verbal-memory encoding using invasive-electroencephalogram coupled has laid the foundation for numerous studies testing the integrity of memory in diseased populations. Yet, the functional connectivity characteristics of networks subserving these HFA-memory linkages remains uncertain. By integrating this electrophysiological biomarker of memory encoding from IEEG with resting-state BOLD fluctuations, we estimated the segregation and hubness of HFA-memory regions in drug-resistant epilepsy patients and matched healthy controls. HFA-memory regions express distinctly different hubness compared to neighboring regions in health and in epilepsy, and this hubness was more relevant than segregation in predicting verbal memory encoding. The HFA-memory network comprised regions from both the cognitive control and primary processing networks, validating that effective verbal-memory encoding requires multiple functions, and is not dominated by a central cognitive core. Our results demonstrate a tonic intrinsic set of functional connectivity, which provides the necessary conditions for effective, phasic, task-dependent memory encoding.HighlightsHigh frequency memory activity in IEEG corresponds to specific BOLD changes in resting-state data.HFA-memory regions had lower hubness relative to control brain nodes in both epilepsy patients and healthy controls.HFA-memory network displayed hubness and participation (interaction) values distinct from other cognitive networks.HFA-memory network shared regional membership and interacted with other cognitive networks for successful memory encoding.HFA-memory network hubness predicted both concurrent task (phasic) and baseline (tonic) verbal-memory encoding success.


2018 ◽  
Vol 3 ◽  
pp. 50 ◽  
Author(s):  
Takamitsu Watanabe ◽  
Geraint Rees

Background: Despite accumulated evidence for adult brain plasticity, the temporal relationships between large-scale functional and structural connectivity changes in human brain networks remain unclear. Methods: By analysing a unique richly detailed 19-week longitudinal neuroimaging dataset, we tested whether macroscopic functional connectivity changes lead to the corresponding structural alterations in the adult human brain, and examined whether such time lags between functional and structural connectivity changes are affected by functional differences between different large-scale brain networks. Results: In this single-case study, we report that, compared to attention-related networks, functional connectivity changes in default-mode, fronto-parietal, and sensory-related networks occurred in advance of modulations of the corresponding structural connectivity with significantly longer time lags. In particular, the longest time lags were observed in sensory-related networks. In contrast, such significant temporal differences in connectivity change were not seen in comparisons between anatomically categorised different brain areas, such as frontal and occipital lobes. These observations survived even after multiple validation analyses using different connectivity definitions or using parts of the datasets. Conclusions: Although the current findings should be examined in independent datasets with different demographic background and by experimental manipulation, this single-case study indicates the possibility that plasticity of macroscopic brain networks could be affected by cognitive and perceptual functions implemented in the networks, and implies a hierarchy in the plasticity of functionally different brain systems.


2020 ◽  
Author(s):  
Shuxia Yao ◽  
Menghan Zhou ◽  
Yuan Zhang ◽  
Feng Zhou ◽  
Qianqian Zhang ◽  
...  

AbstractWhile a number of functional and structural changes occur in large-scale brain networks in autism spectrum disorder (ASD), reduced interhemispheric resting state functional connectivity (rsFC) between homotopic regions may be of particular importance as a biomarker. ASD is an early-onset developmental disorder and neural alterations are often age-dependent, reflecting dysregulated developmental trajectories, although no studies have investigated whether homotopic interhemispheric rsFC alterations occur in ASD children. The present study conducted a voxel-based homotopic interhemispheric rsFC analysis in 146 SD and 175 typically developing children under age 10 and examined associations with symptom severity in the Autism Brain Imaging Data Exchange datasets. Given the role of corpus callosum (CC) in interhemispheric connectivity and reported CC volume changes in ASD we additionally examined whether there were parallel volumetric changes in ASD children. Results demonstrated decreased homotopic rsFC in ASD children in the medial prefrontal cortex, precuneus and posterior cingulate cortex of the default mode network (DMN), the dorsal anterior cingulate cortex of the salience network, the precentral gyrus and inferior parietal lobule of the mirror neuron system, the lingual, fusiform and inferior occipital gyri of the visual processing network and thalamus. Symptom severity was associated with homotopic rsFC in regions in the DMN and visual processing network. There were no significant CC volume changes in ASD children. The present study shows that reduced homotopic interhemispheric rsFC in brain networks in ASD adults/adolescents is already present in children of 5-10 years old and further supports their potential use as a general ASD biomarker.


2014 ◽  
Vol 26 (5) ◽  
pp. 1085-1099 ◽  
Author(s):  
Maureen Ritchey ◽  
Andrew P. Yonelinas ◽  
Charan Ranganath

Neural systems may be characterized by measuring functional interactions in the healthy brain, but it is unclear whether components of systems defined in this way share functional properties. For instance, within the medial temporal lobes (MTL), different subregions show different patterns of cortical connectivity. It is unknown, however, whether these intrinsic connections predict similarities in how these regions respond during memory encoding. Here, we defined brain networks using resting state functional connectivity (RSFC) then quantified the functional similarity of regions within each network during an associative memory encoding task. Results showed that anterior MTL regions affiliated with a network of anterior temporal cortical regions, whereas posterior MTL regions affiliated with a network of posterior medial cortical regions. Importantly, these connectivity relationships also predicted similarities among regions during the associative memory task. Both in terms of task-evoked activation and trial-specific information carried in multivoxel patterns, regions within each network were more similar to one another than were regions in different networks. These findings suggest that functional heterogeneity among MTL subregions may be related to their participation in distinct large-scale cortical systems involved in memory. At a more general level, the results suggest that components of neural systems defined on the basis of RSFC share similar functional properties in terms of recruitment during cognitive tasks and information carried in voxel patterns.


Sign in / Sign up

Export Citation Format

Share Document