scholarly journals IL-33 expression in response to SARS-CoV-2 correlates with seropositivity in COVID-19 convalescent individuals

Author(s):  
Michal A Stanczak ◽  
David E Sanin ◽  
Petya Apostolova ◽  
Gabriele Nerz ◽  
Dimitrios Lampaki ◽  
...  

Our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still developing. We investigated seroprevalence and immune responses in subjects professionally exposed to SARS-CoV-2 and their family members (155 individuals; ages 5-79 years). Seropositivity for SARS-CoV-2 spike glycoprotein aligned with PCR results that confirmed previous infection. Anti-spike IgG titers remained high 60 days post-infection and did not associate with symptoms, but spike-specific IgM did associate with malaise and fever. We found limited household transmission, with children of infected individuals seldomly seropositive, highlighting professional exposure as the dominant route of infection in our cohort. We analyzed PBMCs from a subset of seropositive and seronegative adults. TLR7 agonist- activation revealed an increased population of IL-6+TNF-IL-1β+ monocytes, while SARS-CoV-2 peptide stimulation elicited IL-33, IL-6, IFNa2, and IL-23 expression in seropositive individuals. IL-33 correlated with CD4+ T cell activation in PBMCs from convalescent subjects, and was likely due to T cell-mediated effects on IL-33- producing cells. IL-33 is associated with pulmonary infection and chronic diseases like asthma and COPD, but its role in COVID-19 is unknown. Analysis of published scRNAseq data of bronchoalveolar lavage fluid (BALF) from patients with mild to severe COVID-19 revealed a population of IL-33-producing cells that increases with disease. Together these findings show that IL-33 production is linked to SARS-CoV- 2 infection and warrant further investigation of IL-33 in COVID-19 pathogenesis and immunity.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michal A. Stanczak ◽  
David E. Sanin ◽  
Petya Apostolova ◽  
Gabriele Nerz ◽  
Dimitrios Lampaki ◽  
...  

AbstractOur understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still developing. We perform an observational study to investigate seroprevalence and immune responses in subjects professionally exposed to SARS-CoV-2 and their family members (155 individuals; ages 5–79 years). Seropositivity for SARS-CoV-2 Spike glycoprotein aligns with PCR results that confirm the previous infection. Anti-Spike IgG/IgM titers remain high 60 days post-infection and do not strongly associate with symptoms, except for fever. We analyze PBMCs from a subset of seropositive and seronegative adults. TLR7 agonist-activation reveals an increased population of IL-6+TNF-IL-1β+ monocytes, while SARS-CoV-2 peptide stimulation elicits IL-33, IL-6, IFNa2, and IL-23 expression in seropositive individuals. IL-33 correlates with CD4+ T cell activation in PBMCs from convalescent subjects and is likely due to T cell-mediated effects on IL-33-producing cells. IL-33 is associated with pulmonary infection and chronic diseases like asthma and COPD, but its role in COVID-19 is unknown. Analysis of published scRNAseq data of bronchoalveolar lavage fluid (BALF) from patients with mild to severe COVID-19 reveals a population of IL-33-producing cells that increases with the disease. Together these findings show that IL-33 production is linked to SARS-CoV-2 infection and warrant further investigation of IL-33 in COVID-19 pathogenesis and immunity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alsya J. Affandi ◽  
Katarzyna Olesek ◽  
Joanna Grabowska ◽  
Maarten K. Nijen Twilhaar ◽  
Ernesto Rodríguez ◽  
...  

Monocytes are antigen-presenting cells (APCs) that play diverse roles in promoting or regulating inflammatory responses, but their role in T cell stimulation is not well defined. In inflammatory conditions, monocytes frequently show increased expression of CD169/Siglec-1, a type-I interferon (IFN-I)-regulated protein. However, little is known about the phenotype and function of these CD169+ monocytes. Here, we have investigated the phenotype of human CD169+ monocytes in different diseases, their capacity to activate CD8+ T cells, and the potential for a targeted-vaccination approach. Using spectral flow cytometry, we detected CD169 expression by CD14+ CD16- classical and CD14+ CD16+ intermediate monocytes and unbiased analysis showed that they were distinct from dendritic cells, including the recently described CD14-expressing DC3. CD169+ monocytes expressed higher levels of co-stimulatory and HLA molecules, suggesting an increased activation state. IFNα treatment highly upregulated CD169 expression on CD14+ monocytes and boosted their capacity to cross-present antigen to CD8+ T cells. Furthermore, we observed CD169+ monocytes in virally-infected patients, including in the blood and bronchoalveolar lavage fluid of COVID-19 patients, as well as in the blood of patients with different types of cancers. Finally, we evaluated two CD169-targeting nanovaccine platforms, antibody-based and liposome-based, and we showed that CD169+ monocytes efficiently presented tumor-associated peptides gp100 and WT1 to antigen-specific CD8+ T cells. In conclusion, our data indicate that CD169+ monocytes are activated monocytes with enhanced CD8+ T cell stimulatory capacity and that they emerge as an interesting target in nanovaccine strategies, because of their presence in health and different diseases.


2019 ◽  
Vol 24 (24) ◽  
Author(s):  
Emanuele Nicastri ◽  
Francesco Vairo ◽  
Paola Mencarini ◽  
Antonio Battisti ◽  
Chiara Agrati ◽  
...  

On 31 August, a veterinarian and a farmworker were hospitalised for skin lesions. Both had been exposed to a dead cow on 19 August on a farm near Rome, where eight further cattle died of confirmed anthrax later the same month. At admission, the first case showed a black depressed eschar and another smaller lesion on one hand. The second case presented deep infection of the skin, with involvement of both arms. Anthrax diagnosis was confirmed by detection of B. anthracis DNA in eschar fragments from both patients. T-cell specific immunity was studied by flow cytometry and Elispot assay after stimulation with B. anthracis secretome in blood samples collected from Case 1. Immunoglobulin production was detected by complement fixation assay. In Case 1, specific CD4+ T-cell activation was detected, without antibody production. Specific antibodies were detected only in the second patient with severe cutaneous illness. Both patients recovered. The two human anthrax cases were epidemiologically linked, but anthrax was not suspected at admission in either case. The veterinarian had initially unrecognised professional exposure and the exposed farmworker did initially not report exposure to affected animals. A One Health strategy integrating human and animal investigations was essential to confirm the diagnosis.


Sign in / Sign up

Export Citation Format

Share Document