scholarly journals Polymeric Pathogen-like Particles-Based Combination Adjuvants Elicit Potent Mucosal T Cell Immunity to Influenza A Virus

2020 ◽  
Author(s):  
Brock Kingstad-Bakke ◽  
Randall Toy ◽  
Woojong Lee ◽  
Pallab Pradhan ◽  
Gabriela Vogel ◽  
...  

ABSTRACTEliciting durable and protective T cell-mediated immunity in the respiratory mucosa remains a significant challenge. Polylactic-co-glycolic acid (PLGA)-based cationic pathogen-like particles (PLPs) loaded with TLR agonists mimic biophysical properties of microbes and hence, simulate pathogen-pattern recognition receptor interactions to safely and effectively stimulate innate immune responses. We generated micro particle PLPs loaded with TLR4 (glucopyranosyl lipid adjuvant, GLA) or TLR9 (CpG) agonists, and formulated them with and without a mucosal delivery enhancing carbomer-based nanoemulsion adjuvant (ADJ). These adjuvants delivered intranasally to mice elicited high numbers of influenza nucleoprotein (NP)-specific CD8+/ CD4+ effector and tissue-resident memory T cells (TRMs) in lungs and airways. PLPs delivering TLR4 versus TLR9 agonists drove phenotypically and functionally distinct populations of effector and memory T cells. While PLPs loaded with CpG or GLA provided immunity, combining the adjuvanticity of PLP-GLA and ADJ synergistically enhanced the development of airway and lung TRMs and protective immunity to pathogenic influenza A virus. Further, balanced CD8 (Tc1/Tc17) and CD4 (Th1/Th17) recall responses were linked to effective influenza virus control in the lungs. These studies provide mechanistic insights into vaccine-induced T cell immunity in the respiratory tract and pave the way for the development of a universal influenza vaccine.

2021 ◽  
Vol 11 ◽  
Author(s):  
Brock Kingstad-Bakke ◽  
Randall Toy ◽  
Woojong Lee ◽  
Pallab Pradhan ◽  
Gabriela Vogel ◽  
...  

Eliciting durable and protective T cell-mediated immunity in the respiratory mucosa remains a significant challenge. Polylactic-co-glycolic acid (PLGA)-based cationic pathogen-like particles (PLPs) loaded with TLR agonists mimic biophysical properties of microbes and hence, simulate pathogen-pattern recognition receptor interactions to safely and effectively stimulate innate immune responses. We generated micro particle PLPs loaded with TLR4 (glucopyranosyl lipid adjuvant, GLA) or TLR9 (CpG) agonists, and formulated them with and without a mucosal delivery enhancing carbomer-based nanoemulsion adjuvant (ADJ). These adjuvants delivered intranasally to mice elicited high numbers of influenza nucleoprotein (NP)-specific CD8+ and CD4+ effector and tissue-resident memory T cells (TRMs) in lungs and airways. PLPs delivering TLR4 versus TLR9 agonists drove phenotypically and functionally distinct populations of effector and memory T cells. While PLPs loaded with CpG or GLA provided immunity, combining the adjuvanticity of PLP-GLA and ADJ markedly enhanced the development of airway and lung TRMs and CD4 and CD8 T cell-dependent immunity to influenza virus. Further, balanced CD8 (Tc1/Tc17) and CD4 (Th1/Th17) recall responses were linked to effective influenza virus control. These studies provide mechanistic insights into vaccine-induced pulmonary T cell immunity and pave the way for the development of a universal influenza and SARS-CoV-2 vaccines.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 199
Author(s):  
Anna Schmidt ◽  
Dennis Lapuente

Current flu vaccines rely on the induction of strain-specific neutralizing antibodies, which leaves the population vulnerable to drifted seasonal or newly emerged pandemic strains. Therefore, universal flu vaccine approaches that induce broad immunity against conserved parts of influenza have top priority in research. Cross-reactive T cell responses, especially tissue-resident memory T cells in the respiratory tract, provide efficient heterologous immunity, and must therefore be a key component of universal flu vaccines. Here, we review recent findings about T cell-based flu immunity, with an emphasis on tissue-resident memory T cells in the respiratory tract of humans and different animal models. Furthermore, we provide an update on preclinical and clinical studies evaluating T cell-evoking flu vaccines, and discuss the implementation of T cell immunity in real-life vaccine policies.


2018 ◽  
Vol 92 (17) ◽  
Author(s):  
Min Zhao ◽  
Junbo Chen ◽  
Shuguang Tan ◽  
Tao Dong ◽  
Hui Jiang ◽  
...  

ABSTRACT Since 2013, influenza A H7N9 virus has emerged as the most common avian influenza virus subtype causing human infection, and it is associated with a high fatality risk. However, the characteristics of immune memory in patients who have recovered from H7N9 infection are not well understood. We assembled a cohort of 45 H7N9 survivors followed for up to 15 months after infection. Humoral and cellular immune responses were analyzed in sequential samples obtained at 1.5 to 4 months, 6 to 8 months, and 12 to 15 months postinfection. H7N9-specific antibody concentrations declined over time, and protective antibodies persisted longer in severely ill patients admitted to the intensive care unit (ICU) and patients presenting with acute respiratory distress syndrome (ARDS) than in patients with mild disease. Frequencies of virus-specific gamma interferon (IFN-γ)-secreting T cells were lower in critically ill patients requiring ventilation than in patients without ventilation within 4 months after infection. The percentages of H7N9-specific IFN-γ-secreting T cells tended to increase over time in patients ≥60 years or in critically ill patients requiring ventilation. Elevated levels of antigen-specific CD8+ T cells expressing the lung-homing marker CD49a were observed at 6 to 8 months after H7N9 infection compared to those in samples obtained at 1.5 to 4 months. Our findings indicate the prolonged reconstruction and evolution of virus-specific T cell immunity in older or critically ill patients and have implications for T cell-directed immunization strategies. IMPORTANCE Avian influenza A H7N9 virus remains a major threat to public health. However, no previous studies have determined the characteristics and dynamics of virus-specific T cell immune memory in patients who have recovered from H7N9 infection. Our findings showed that establishment of H7N9-specific T cell memory after H7N9 infection was prolonged in older and severely affected patients. Severely ill patients mounted lower T cell responses in the first 4 months after infection, while T cell responses tended to increase over time in older and severely ill patients. Higher levels of antigen-specific CD8+ T cells expressing the lung-homing marker CD49a were detected at 6 to 8 months after infection. Our results indicated a long-term impact of H7N9 infection on virus-specific memory T cells. These findings advance our understanding of the dynamics of virus-specific memory T cell immunity after H7N9 infection, which is relevant to the development of T cell-based universal influenza vaccines.


2000 ◽  
Vol 68 (11) ◽  
pp. 6223-6232 ◽  
Author(s):  
Magali Moretto ◽  
Lori Casciotti ◽  
Brigit Durell ◽  
Imtiaz A. Khan

ABSTRACT Cell-mediated immunity has been reported to play an important role in defense against Encephalitozoon cuniculi infection. Previous studies from our laboratory have underlined the importance of cytotoxic CD8+ T lymphocytes (CTL) in survival of mice infected with E. cuniculi. In the present study, immune response against E. cuniculi infection in CD4+T-cell-deficient mice was evaluated. Similar to resistant wild-type animals, CD4−/− mice were able to resolve E. cuniculi infection even at a very high challenge dose (5 × 107 spores/mouse). Tissues from infected CD4−/− mice did not exhibit higher parasite loads in comparison to the parental wild-type mice. Conversely, at day 21 postinfection, susceptible CD8−/− mice had 1014 times more parasites in the liver compared to control wild-type mice. Induction of the CD8+ T-cell response in CD4−/− mice against E. cuniculi infection was studied. Interestingly, a normal antigen-specific CD8+T-cell response to E. cuniculi infection was observed in CD4−/− mice (precursor proliferation frequency, 1/2.5 × 104 versus 1/104 in wild-type controls). Lack of CD4+ T cells did not alter the magnitude of the antigen-specific CTL response (precursor CTL frequency; 1/1.4 × 104 in CD4−/− mice versus 1/3 × 104 in control mice). Adoptive transfer of immune CD8+ T cells from both CD4−/− and wild-type animals prevented the mortality in CD8−/− mice.E. cuniculi infection thus offers an example of an intracellular parasitic infection where CD8+ T-cell immunity can be induced in the absence of CD4+ T cells.


2019 ◽  
Vol 20 (8) ◽  
pp. 1035-1045 ◽  
Author(s):  
Emily A. Hemann ◽  
Richard Green ◽  
J. Bryan Turnbull ◽  
Ryan A. Langlois ◽  
Ram Savan ◽  
...  

2014 ◽  
Vol 111 (3) ◽  
pp. 1049-1054 ◽  
Author(s):  
S. Quinones-Parra ◽  
E. Grant ◽  
L. Loh ◽  
T. H. O. Nguyen ◽  
K.-A. Campbell ◽  
...  

2000 ◽  
Vol 74 (24) ◽  
pp. 11690-11696 ◽  
Author(s):  
Jan P. Christensen ◽  
Peter C. Doherty ◽  
Kristen C. Branum ◽  
Janice M. Riberdy

ABSTRACT The recall of CD8+ T-cell memory established by infecting H-2b mice with an H1N1 influenza A virus provided a measure of protection against an extremely virulent H7N7 virus. The numbers of CD8+ effector and memory T cells specific for the shared, immunodominant DbNP366epitope were greatly increased subsequent to the H7N7 challenge, and though lung titers remained as high as those in naive controls for 5 days or more, the virus was cleared more rapidly. Expanding the CD8+ memory T-cell pool (<0.5 to >10%) by sequential priming with two different influenza A viruses (H3N2→H1N1) gave much better protection. Though the H7N7 virus initially grew to equivalent titers in the lungs of naive and double-primed mice, the replicative phase was substantially controlled within 3 days. This tertiary H7N7 challenge caused little increase in the magnitude of the CD8+ DbNP366 + T-cell pool, and only a portion of the memory population in the lymphoid tissue could be shown to proliferate. The great majority of the CD8+ DbNP366 + set that localized to the infected respiratory tract had, however, cycled at least once, though recent cell division was shown not to be a prerequisite for T-cell extravasation. The selective induction of CD8+ T-cell memory can thus greatly limit the damage caused by a virulent influenza A virus, with the extent of protection being directly related to the number of available responders. Furthermore, a large pool of CD8+ memory T cells may be only partially utilized to deal with a potentially lethal influenza infection.


2018 ◽  
Vol 9 ◽  
Author(s):  
Zeb R. Zacharias ◽  
Kathleen A. Ross ◽  
Emma E. Hornick ◽  
Jonathan T. Goodman ◽  
Balaji Narasimhan ◽  
...  

Virology ◽  
2002 ◽  
Vol 299 (1) ◽  
pp. 100-108 ◽  
Author(s):  
A.C.M. Boon ◽  
E. Fringuelli ◽  
Y.M.F. Graus ◽  
R.A.M. Fouchier ◽  
K. Sintnicolaas ◽  
...  

Author(s):  
Nina Le Bert ◽  
Anthony T Tan ◽  
Kamini Kunasegaran ◽  
Christine Y L Tham ◽  
Morteza Hafezi ◽  
...  

AbstractMemory T cells induced by previous infections can influence the course of new viral infections. Little is known about the pattern of SARS-CoV-2 specific pre-existing memory T cells in human. Here, we first studied T cell responses to structural (nucleocapsid protein, NP) and non-structural (NSP-7 and NSP13 of ORF1) regions of SARS-CoV-2 in convalescent from COVID-19 (n=24). In all of them we demonstrated the presence of CD4 and CD8 T cells recognizing multiple regions of the NP protein. We then show that SARS-recovered patients (n=23), 17 years after the 2003 outbreak, still possess long-lasting memory T cells reactive to SARS-NP, which displayed robust cross-reactivity to SARS-CoV-2 NP. Surprisingly, we observed a differential pattern of SARS-CoV-2 specific T cell immunodominance in individuals with no history of SARS, COVID-19 or contact with SARS/COVID-19 patients (n=18). Half of them (9/18) possess T cells targeting the ORF-1 coded proteins NSP7 and 13, which were rarely detected in COVID-19- and SARS-recovered patients. Epitope characterization of NSP7-specific T cells showed recognition of protein fragments with low homology to “common cold” human coronaviruses but conserved among animal betacoranaviruses.Thus, infection with betacoronaviruses induces strong and long-lasting T cell immunity to the structural protein NP. Understanding how pre-existing ORF-1-specific T cells present in the general population impact susceptibility and pathogenesis of SARS-CoV-2 infection is of paramount importance for the management of the current COVID-19 pandemic.


Sign in / Sign up

Export Citation Format

Share Document