universal influenza vaccine
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 75)

H-INDEX

25
(FIVE YEARS 6)

2021 ◽  
Vol 21 (3) ◽  
pp. 127-130
Author(s):  
Daria А. Mezhenskaya ◽  
Irina N. Isakova-Sivak ◽  
Anastasiya E. Katelnikova ◽  
Larisa G. Rudenko

The development of a universal influenza vaccine with a wide spectrum and duration of action is one of the serious public health problems. This study is dedicated to optimization of an immunogen covering the M2e epitopes of influenza A viruses circulating in the natural reservoir, as well as the creation of a prototype of a universal influenza vaccine with subsequent quantitative and qualitative assessment of the induced anti-M2e responses in ferrets.


Vaccines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1182
Author(s):  
Erasmus Nikoi Kotey ◽  
William Kwabena Ampofo ◽  
Rebecca Daines ◽  
Jean-Remy Sadeyen ◽  
Munir Iqbal ◽  
...  

Identification of a universal influenza vaccine candidate has remained a global challenge for both humans and animals. This study describes an approach that uses consensus sequence building to generate chimeric HAs (cHAs): two resultant H1 HA-based chimeras comprising of conserved sequences (within several areas spanning the head and stalk regions) of H1 and H5 or H9 HAs. These cHAs expressed in Drosophila cells (S2) were used to immunize mice. All immunized mice were protected from an infectious H1 virus challenge. Seroconverted mice sera to the H1 cHAs inhibited both the challenge virus and an H5 virus isolate by haemagglutination inhibition (HI) assay. These findings further emphasize that cHAs induce cross-reactive antibodies against conserved areas of both head and stalk regions of the seasonal influenza A (H1N1) pdm09 virus’ HA and holds potential for further development of a universal influenza vaccine.


2021 ◽  
Author(s):  
Xiaojian Yao ◽  
Titus Olukitibi ◽  
Zhujun Ao ◽  
Hiva Azizi ◽  
Mona Mahmoudi ◽  
...  

A universal influenza vaccine is required for broad protection against influenza infection. Here, we revealed the efficacy of novel influenza vaccine candidates based on Ebola glycoprotein (EboGP) DC-targeting domain (EΔM) fusion protein technology. We fused influenza hemagglutinin stalk (HAcs) and extracellular matrix protein (M2e) or four copies of M2e (referred to as tetra M2e (tM2e)) with EΔM to generate EΔM-HM2e or EΔM-tM2e, respectively, and revealed that EΔM facilitates DC/macrophage targeting in vitro. In a mouse study, EΔM-HM2e- or EΔM-tM2e-pseudotyped viral particles (PVPs) induced significantly higher titers of anti-HA and/or anti-M2e antibodies. We also developed recombinant vesicular stomatitis virus (rVSV)-EΔM-HM2e and rVSV-EΔM-tM2e vaccines that resulted in rapid and potent induction of HA and/or M2 antibodies in mouse sera and mucosa. Importantly, vaccination protects mice from influenza H1N1 and H3N2 challenges. Taken together, our study suggests that recombinant rVSV-EΔM-HM2e and rVSV-EΔM-tM2e are efficacious and protective universal vaccines against influenza.


Vaccine ◽  
2021 ◽  
Author(s):  
Thomas D.J. de Haas ◽  
Karene Hoi Ting Yeung ◽  
Raymond Hutubessy ◽  
Ingeborg Maria van der Putten ◽  
E. Anthony S. Nelson

2021 ◽  
Vol 12 ◽  
Author(s):  
Yongqing Liu ◽  
Xiaoli Wang ◽  
Jiangfei Zhou ◽  
Shuaibing Shi ◽  
Tengfei Shen ◽  
...  

The protection of current influenza vaccines is limited due to the viral antigenic shifts and antigenic drifts. The universal influenza vaccine is a new hotspot in vaccine research that aims to overcome these problems. Polydopamine (PDA), a versatile biomaterial, has the advantages of an excellent biocompatibility, controllable particle size, and distinctive drug loading approach in drug delivery systems. To enhance the immunogenicities and delivery efficiencies of H9N2 avian influenza virus (AIV) epitope peptide vaccines, PDA nanoparticles conjugated with the BPP-V and BP-IV epitope peptides were used to prepare the nano BPP-V and BP-IV epitope peptide vaccines, respectively. The characteristics of the newly developed epitope peptide vaccines were then evaluated, revealing particle sizes ranging from approximately 240 to 290 nm (PDI<0.3), indicating that the synthesized nanoparticles were stable. Simultaneously, the immunoprotective effects of nano BPP-V and BP-IV epitope peptide vaccines were assessed. The nano BPP-V and BP-IV epitope vaccines, especially nano BP-IV epitope vaccine, quickly induced anti-hemagglutinin (HA) antibody production and a sustained immune response, significantly promoted humoral and cellular immune responses, reduced viral lung damage and provided effective protection against AIV viral infection. Together, these results reveal that PDA, as a delivery carrier, can improve the immunogenicities and delivery efficiencies of H9N2 AIV nano epitope vaccines, thereby providing a theoretical basis for the design and development of PDA as a carrier of new universal influenza vaccines.


Vaccines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 739
Author(s):  
Mei Peng Tan ◽  
Wen Siang Tan ◽  
Noorjahan Banu Mohamed Alitheen ◽  
Wei Boon Yap

Discovery of conserved antigens for universal influenza vaccines warrants solutions to a number of concerns pertinent to the currently licensed influenza vaccines, such as annual reformulation and mismatching with the circulating subtypes. The latter causes low vaccine efficacies, and hence leads to severe disease complications and high hospitalization rates among susceptible and immunocompromised individuals. A universal influenza vaccine ensures cross-protection against all influenza subtypes due to the presence of conserved epitopes that are found in the majority of, if not all, influenza types and subtypes, e.g., influenza matrix protein 2 ectodomain (M2e) and nucleoprotein (NP). Despite its relatively low immunogenicity, influenza M2e has been proven to induce humoral responses in human recipients. Influenza NP, on the other hand, promotes remarkable anti-influenza T-cell responses. Additionally, NP subunits are able to assemble into particles which can be further exploited as an adjuvant carrier for M2e peptide. Practically, the T-cell immunodominance of NP can be transferred to M2e when it is fused and expressed as a chimeric protein in heterologous hosts such as Escherichia coli without compromising the antigenicity. Given the ability of NP-M2e fusion protein in inducing cross-protective anti-influenza cell-mediated and humoral immunity, its potential as a universal influenza vaccine is therefore worth further exploration.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1280
Author(s):  
Daria Mezhenskaya ◽  
Irina Isakova-Sivak ◽  
Victoria Matyushenko ◽  
Svetlana Donina ◽  
Andrey Rekstin ◽  
...  

The development of an influenza vaccine with broad protection and durability remains an attractive idea due to the high mutation rate of the influenza virus. An extracellular domain of Matrix 2 protein (M2e) is among the most attractive target for the universal influenza vaccine owing to its high conservancy rate. Here, we generated two recombinant live attenuated influenza vaccine (LAIV) candidates encoding four M2e epitopes representing consensus sequences of human, avian and swine influenza viruses, and studied them in a preclinical ferret model. Both LAIV+4M2e viruses induced higher levels of M2e-specific antibodies compared to the control LAIV strain, with the LAIV/HA+4M2e candidate being significantly more immunogenic than the LAIV/NS+4M2e counterpart. A high-dose heterosubtypic influenza virus challenge revealed the highest degree of protection after immunization with LAIV/HA+4M2e strain, followed by the NS-modified LAIV and the classical LAIV virus. Furthermore, only the immune sera from the LAIV/HA+4M2e-immunized ferrets protected mice from a panel of lethal influenza viruses encoding M genes of various origins. These data suggest that the improved cross-protection of the LAIV/HA+4M2e universal influenza vaccine candidate was mediated by the M2e-targeted antibodies. Taking into account the safety profile and improved cross-protective potential, the LAIV/HA+4M2e vaccine warrants its further evaluation in a phase I clinical trial.


Vaccines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 698
Author(s):  
Clara J. Sei ◽  
Mangala Rao ◽  
Richard F. Schuman ◽  
Luke T. Daum ◽  
Gary R. Matyas ◽  
...  

A universal influenza candidate vaccine that targets multiple conserved influenza virus epitopes from hemagglutinin (HA), neuraminidase (NA) and matrix (M2e) proteins was combined with the potent Army liposomal adjuvant (ALFQ) to promote induction of broad immunity to seasonal and pandemic influenza strains. The unconjugated and CRM-conjugated composite peptides formulated with ALFQ were highly immunogenic and induced both humoral and cellular immune responses in mice. Broadly reactive serum antibodies were induced across various IgG isotypes. Mice immunized with the unconjugated composite peptide developed antibody responses earlier than mice immunized with conjugated peptides, and the IgG antibodies were broadly reactive and neutralizing across Groups 1 and 2 influenza viruses. Multi-epitope unconjugated influenza composite peptides formulated with ALFQ provide a novel strategy for the development of a universal influenza vaccine. These synthetic peptide vaccines avoid the pitfalls of egg-produced influenza vaccines and production can be scaled up rapidly and economically.


Sign in / Sign up

Export Citation Format

Share Document