scholarly journals Structural mechanism for amino acid-dependent Rag GTPase switching by SLC38A9

2020 ◽  
Author(s):  
Simon A. Fromm ◽  
Rosalie E. Lawrence ◽  
James H. Hurley

The mechanistic target of rapamycin complex 1 (mTORC1) couples cell growth to nutrient, energy and growth factor availability (1–3). mTORC1 is activated at the lysosomal membrane when amino acids are replete via the Rag guanosine triphosphatases (GTPases) (4–6). Rags exist in two stable states, an inactive (RagA/BGDP:RagC/DGTP) and active (RagA/BGTP:RagC/DGDP) state, during low and high cellular amino acid levels (4, 5). The lysosomal folliculin (FLCN) complex (LFC) consists of the inactive Rag dimer, the pentameric scaffold Ragulator (7, 8), and the FLCN:FNIP (FLCN-interacting protein) GTPase activating protein (GAP) complex (9), and prevents activation of the Rag dimer during amino acid starvation (10, 11). How the LFC is released upon amino acid refeeding is a major outstanding question in amino-acid dependent Rag activation. Here we show that the cytoplasmic tail of the lysosomal solute carrier family 38 member 9 (SLC38A9), a known Rag activator (12–14), destabilizes the LFC. By breaking up the LFC, SLC38A9 triggers the GAP activity of FLCN:FNIP toward RagC. We present the cryo electron microscopy (cryo-EM) structures of Rags in complex with their lysosomal anchor complex Ragulator and the cytoplasmic tail of SLC38A9 in the pre and post GTP hydrolysis state of RagC, which explain how SLC38A9 destabilizes the LFC and so promotes Rag dimer activation.

Science ◽  
2019 ◽  
Vol 366 (6468) ◽  
pp. 971-977 ◽  
Author(s):  
Rosalie E. Lawrence ◽  
Simon A. Fromm ◽  
Yangxue Fu ◽  
Adam L. Yokom ◽  
Do Jin Kim ◽  
...  

The tumor suppressor folliculin (FLCN) enables nutrient-dependent activation of the mechanistic target of rapamycin complex 1 (mTORC1) protein kinase via its guanosine triphosphatase (GTPase) activating protein (GAP) activity toward the GTPase RagC. Concomitant with mTORC1 inactivation by starvation, FLCN relocalizes from the cytosol to lysosomes. To determine the lysosomal function of FLCN, we reconstituted the human lysosomal FLCN complex (LFC) containing FLCN, its partner FLCN-interacting protein 2 (FNIP2), and the RagAGDP:RagCGTP GTPases as they exist in the starved state with their lysosomal anchor Ragulator complex and determined its cryo–electron microscopy structure to 3.6 angstroms. The RagC-GAP activity of FLCN was inhibited within the LFC, owing to displacement of a catalytically required arginine in FLCN from the RagC nucleotide. Disassembly of the LFC and release of the RagC-GAP activity of FLCN enabled mTORC1-dependent regulation of the master regulator of lysosomal biogenesis, transcription factor E3, implicating the LFC as a checkpoint in mTORC1 signaling.


2020 ◽  
Vol 27 (11) ◽  
pp. 1017-1023 ◽  
Author(s):  
Simon A. Fromm ◽  
Rosalie E. Lawrence ◽  
James H. Hurley

2021 ◽  
pp. 101327
Author(s):  
Maria Camila Alfaro-Wisaquillo ◽  
Edgar O. Oviedo-Rondón ◽  
Hernan A. Cordova-Noboa ◽  
Justina V. Caldas ◽  
Gustavo A. Quintana-Ospina ◽  
...  

2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 76-76
Author(s):  
Ron Ball ◽  
Crystal L Levesque ◽  
D J Cadogan

Abstract Most sows are fed a constant energy and amino acid supply throughout gestation, in line with the recommendations of most authorities and swine genetic companies. These recommendations for sow feeding have seen little change in decades, despite the many ways that sows have changed dramatically in reproductive performance. Beginning in about the year 2000, sow litter size has steadily increased as a result of genetic selection. With this increase in litter number has been a steady decline in birth weight, and the resulting negative effects of lower birthweight on subsequent piglet performance. Many experiments using so-called ‘bump’ feeding, or increased energy intake in late gestation, have been conducted in attempts to arrest this decline in birthweight and piglet performance. Generally, these experiments have shown little to no improvement in birthweight and often have negative effects on sow feed intake during gestation. These experiments have ignored the fact that the energy:amino acid ratios (lysine, threonine, isoleucine, tryptophan) in late gestation are different than during early and mid-gestation. In recent research in Australia we hypothesised that rapidly increasing essential amino acid levels in late gestation would increase birth weight and potentially improve subsequent reproductive performance. Three hundred and thirty-four multiparous PIC sows (average parity 3.6, average LW 261 kg) were housed in a dynamic gestation pen after mating and randomly assigned to one of two diet regimes. Two 13.5 MJ/kg DE gestation diets were formulated and created by blending in an ESF. The Control diet contained 0.48 g SID lysine per MJ DE and SID threonine, methionine+ cysteine, isoleucine and tryptophan at 68%, 65%, 58% and18% of SID lysine and offered at 2.2kg/day from d 28 to d 110. Sow were then moved to the farrowing house and placed on a lactation diet at 3.5kg/d. The Treatment diet contained 0.55 g SID lysine/MJ DE and SID threonine, methionine+cysteine, isoleucine and tryptophan at 78%, 65%, 60% and 20% of SID lysine and offered at 2.1kg/d from d 28 to d 85 and then increased to 2.4 kg/d to d 110 d. Increasing essential amino acid levels in late gestation increased gestational weight gain (5.6 kg, P=0.004), increased total litter birth weight (1.25 kg, P=0.003), and increased the birthweight of liveborn pigs from 1.286 to 1.329 kg, (P=0.04). There was no significant effect on the total number born or born alive. Piglet performance is not available because this commercial farm practices cross-fostering. Effects of continuation of this feeding regime in the same sows during subsequent parities is currently being evaluated.


1949 ◽  
Vol 177 (1) ◽  
pp. 91-95 ◽  
Author(s):  
Choh.Hao. Li ◽  
I. Geschwind ◽  
Herbert M. Evans
Keyword(s):  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Eva-Maria Sedlmeier ◽  
Dorothy M. Meyer ◽  
Lynne Stecher ◽  
Manuela Sailer ◽  
Hannelore Daniel ◽  
...  

Abstract Background Previously, we revealed sexually dimorphic mRNA expression and responsiveness to maternal dietary supplementation with n-3 long-chain polyunsaturated fatty acids (LCPUFA) in placentas from a defined INFAT study subpopulation. Here, we extended these analyses and explored the respective placental microRNA expression, putative microRNA-mRNA interactions, and downstream target processes as well as their associations with INFAT offspring body composition. Results We performed explorative placental microRNA profiling, predicted microRNA-mRNA interactions by bioinformatics, validated placental target microRNAs and their putative targets by RT-qPCR and western blotting, and measured amino acid levels in maternal and offspring cord blood plasma and placenta. microRNA, mRNA, protein, and amino acid levels were associated with each other and with offspring body composition from birth to 5 years of age. Forty-six differentially regulated microRNAs were found. Validations identified differential expression for microRNA-99a (miR-99a) and its predicted target genes mTOR, SLC7A5, encoding L-type amino acid transporter 1 (LAT1), and SLC6A6, encoding taurine transporter (TauT), and their prevailing significant sexually dimorphic regulation. Target mRNA levels were mostly higher in placentas from control male than from female offspring, whereas respective n-3 LCPUFA responsive target upregulation was predominantly found in female placentas, explaining the rather balanced expression levels between the sexes present only in the intervention group. LAT1 and TauT substrates tryptophan and taurine, respectively, were significantly altered in both maternal plasma at 32 weeks’ gestation and cord plasma following intervention, but not in the placenta. Several significant associations were observed for miR-99a, mTOR mRNA, SLC7A5 mRNA, and taurine and tryptophan in maternal and cord plasma with offspring body composition at birth, 1 year, 3 and 5 years of age. Conclusions Our data suggest that the analyzed targets may be part of a sexually dimorphic molecular regulatory network in the placenta, possibly modulating gene expression per se and/or counteracting n-3 LCPUFA responsive changes, and thereby stabilizing respective placental and fetal amino acid levels. Our data propose placental miR-99, SLC7A5 mRNA, and taurine and tryptophan levels in maternal and fetal plasma as potentially predictive biomarkers for offspring body composition.


2021 ◽  
Vol 403 ◽  
pp. 108187
Author(s):  
Donald. A Godfrey ◽  
William B. Farms ◽  
Sharon Polensek ◽  
Jon D. Dunn ◽  
Timothy G. Godfrey

Sign in / Sign up

Export Citation Format

Share Document