scholarly journals Spatially localized cluster solutions in inhibitory neural networks

2020 ◽  
Author(s):  
Hwayeon Ryu ◽  
Jennifer Miller ◽  
Zeynep Teymuroglu ◽  
Xueying Wang ◽  
Victoria Booth ◽  
...  

Neurons in the inhibitory network of the striatum display cell assembly firing patterns which recent results suggest may consist of spatially compact neural clusters. Previous computational modeling of striatal neural networks has indicated that non-monotonic, distance-dependent coupling may promote spatially localized cluster firing. Here, we identify conditions for the existence and stability of cluster firing solutions in which clusters consist of spatially adjacent neurons in inhibitory neural networks. We consider simple non-monotonic, distance-dependent connectivity schemes in weakly coupled 1-D networks where cells make strong connections with their kth nearest neighbors on each side. Using the phase model reduction of the network system, we prove the existence of cluster solutions where neurons that are spatially close together are also synchronized in the same cluster, and find stability conditions for these solutions. Our analysis predicts the long-term behavior for networks of neurons, and we confirm our results by numerical simulations of biophysical neuron network models. Additionally, we add weaker coupling between closer neighbors as a perturbation to our network connectivity. We analyze the existence and stability of cluster solutions of the perturbed network and validate our results with numerical simulations. Our results demonstrate that an inhibitory network with non-monotonic, distance-dependent connectivity can exhibit cluster solutions where adjacent cells fire together.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Vesa Kuikka

AbstractWe present methods for analysing hierarchical and overlapping community structure and spreading phenomena on complex networks. Different models can be developed for describing static connectivity or dynamical processes on a network topology. In this study, classical network connectivity and influence spreading models are used as examples for network models. Analysis of results is based on a probability matrix describing interactions between all pairs of nodes in the network. One popular research area has been detecting communities and their structure in complex networks. The community detection method of this study is based on optimising a quality function calculated from the probability matrix. The same method is proposed for detecting underlying groups of nodes that are building blocks of different sub-communities in the network structure. We present different quantitative measures for comparing and ranking solutions of the community detection algorithm. These measures describe properties of sub-communities: strength of a community, probability of formation and robustness of composition. The main contribution of this study is proposing a common methodology for analysing network structure and dynamics on complex networks. We illustrate the community detection methods with two small network topologies. In the case of network spreading models, time development of spreading in the network can be studied. Two different temporal spreading distributions demonstrate the methods with three real-world social networks of different sizes. The Poisson distribution describes a random response time and the e-mail forwarding distribution describes a process of receiving and forwarding messages.


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 155
Author(s):  
Bruno Cessac ◽  
Ignacio Ampuero ◽  
Rodrigo Cofré

We establish a general linear response relation for spiking neuronal networks, based on chains with unbounded memory. This relation allow us to predict the influence of a weak amplitude time dependent external stimuli on spatio-temporal spike correlations, from the spontaneous statistics (without stimulus) in a general context where the memory in spike dynamics can extend arbitrarily far in the past. Using this approach, we show how the linear response is explicitly related to the collective effect of the stimuli, intrinsic neuronal dynamics, and network connectivity on spike train statistics. We illustrate our results with numerical simulations performed over a discrete time integrate and fire model.


2018 ◽  
Vol 6 (11) ◽  
pp. 216-216 ◽  
Author(s):  
Zhongheng Zhang ◽  
◽  
Marcus W. Beck ◽  
David A. Winkler ◽  
Bin Huang ◽  
...  

Author(s):  
Fathi Ahmed Ali Adam, Mahmoud Mohamed Abdel Aziz Gamal El-Di

The study examined the use of artificial neural network models to predict the exchange rate in Sudan through annual exchange rate data between the US dollar and the Sudanese pound. This study aimed to formulate the models of artificial neural networks in which the exchange rate can be predicted in the coming period. The importance of the study is that it is necessary to use modern models to predict instead of other classical models. The study hypothesized that the models of artificial neural networks have a high ability to predict the exchange rate. Use models of artificial neural networks. The most important results ability of artificial neural networks models to predict the exchange rate accurately, Form MLP (1-1-1) is the best model chosen for that purpose. The study recommended the development of the proposed model for long-term forecasting.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Ehsan Ardjmand ◽  
David F. Millie ◽  
Iman Ghalehkhondabi ◽  
William A. Young II ◽  
Gary R. Weckman

Artificial neural networks (ANNs) are powerful empirical approaches used to model databases with a high degree of accuracy. Despite their recognition as universal approximators, many practitioners are skeptical about adopting their routine usage due to lack of model transparency. To improve the clarity of model prediction and correct the apparent lack of comprehension, researchers have utilized a variety of methodologies to extract the underlying variable relationships within ANNs, such as sensitivity analysis (SA). The theoretical basis of local SA (that predictors are independent and inputs other than variable of interest remain “fixed” at predefined values) is challenged in global SA, where, in addition to altering the attribute of interest, the remaining predictors are varied concurrently across their respective ranges. Here, a regression-based global methodology, state-based sensitivity analysis (SBSA), is proposed for measuring the importance of predictor variables upon a modeled response within ANNs. SBSA was applied to network models of a synthetic database having a defined structure and exhibiting multicollinearity. SBSA achieved the most accurate portrayal of predictor-response relationships (compared to local SA and Connected Weights Analysis), closely approximating the actual variability of the modeled system. From this, it is anticipated that skepticisms concerning the delineation of predictor influences and their uncertainty domains upon a modeled output within ANNs will be curtailed.


2021 ◽  
Vol 1 (1) ◽  
pp. 19-29
Author(s):  
Zhe Chu ◽  
Mengkai Hu ◽  
Xiangyu Chen

Recently, deep learning has been successfully applied to robotic grasp detection. Based on convolutional neural networks (CNNs), there have been lots of end-to-end detection approaches. But end-to-end approaches have strict requirements for the dataset used for training the neural network models and it’s hard to achieve in practical use. Therefore, we proposed a two-stage approach using particle swarm optimizer (PSO) candidate estimator and CNN to detect the most likely grasp. Our approach achieved an accuracy of 92.8% on the Cornell Grasp Dataset, which leaped into the front ranks of the existing approaches and is able to run at real-time speeds. After a small change of the approach, we can predict multiple grasps per object in the meantime so that an object can be grasped in a variety of ways.


Sign in / Sign up

Export Citation Format

Share Document