scholarly journals Scalable metabolic pathway analysis

2020 ◽  
Author(s):  
Ove Øyås ◽  
Jörg Stelling

The scope of application of genome-scale constraint-based models (CBMs) of metabolic networks rapidly expands toward multicellular systems. However, comprehensive analysis of CBMs through metabolic pathway analysis remains a major computational challenge because pathway numbers grow combinatorially with model sizes. Here, we define the minimal pathways (MPs) of a metabolic (sub)network as a subset of its elementary flux vectors. We enumerate or sample them efficiently using iterative minimization and a simple graph representation of MPs. These methods outperform the state of the art and they allow scalable pathway analysis for microbial and mammalian CBMs. Sampling random MPs from Escherichia coli’s central carbon metabolism in the context of a genome-scale CBM improves predictions of gene importance, and enumerating all minimal exchanges in a host-microbe model of the human gut predicts exchanges of metabolites associated with host-microbiota homeostasis and human health. MPs thereby open up new possibilities for the detailed analysis of large-scale metabolic networks.

2019 ◽  
Vol 20 (8) ◽  
pp. 1978 ◽  
Author(s):  
A. Suggey Guerra-Renteria ◽  
M. Alberto García-Ramírez ◽  
César Gómez-Hermosillo ◽  
Abril Gómez-Guzmán ◽  
Yolanda González-García ◽  
...  

Anthropogenic activities have increased the amount of urban wastewater discharged into natural aquatic reservoirs containing a high amount of nutrients such as phosphorus (Pi and PO 4 − 3 ), nitrogen (NH 3 and NO 3 − ) and organic contaminants. Most of the urban wastewater in Mexico do not receive any treatment to remove nutrients. Several studies have reported that an alternative to reduce those contaminants is using consortiums of microalgae and endogenous bacteria. In this research, a genome-scale biochemical reaction network is reconstructed for the co-culture between the microalga Chlorella vulgaris and the bacterium Pseudomonas aeruginosa. Metabolic Pathway Analysis (MPA), is applied to understand the metabolic capabilities of the co-culture and to elucidate the best conditions in removing nutrients. Theoretical yields for phosphorus removal under photoheterotrophic conditions are calculated, determining their values as 0.042 mmol of PO 4 − 3 per g DW of C. vulgaris, 19.43 mmol of phosphorus (Pi) per g DW of C. vulgaris and 4.90 mmol of phosphorus (Pi) per g DW of P. aeruginosa. Similarly, according to the genome-scale biochemical reaction network the theoretical yields for nitrogen removal are 10.3 mmol of NH 3 per g DW of P. aeruginosa and 7.19 mmol of NO 3 − per g DW of C. vulgaris. Thus, this research proves the metabolic capacity of these microorganisms in removing nutrients and their theoretical yields are calculated.


Author(s):  
A. Suggey Guerra-Rentería ◽  
Mario García-Ramírez ◽  
César Gómez-Hermosillo ◽  
Abril Goméz-Guzmán ◽  
Yolanda González-García ◽  
...  

Anthropogenic activities have increased the amount of urban wastewater discharged into natural aquatic reservoirs confining in them a high amount of nutrients and organics contaminants. Several studies have reported that an alternative to reduce those contaminants is using consortiums of microalgae and endogenous bacteria. In this research, a genome-scale biochemical reaction network is reconstructed for the co-culture between the microalga Chlorella vulgaris and the bacterium Pesudomonas aeruginosa. Metabolic Pathway Analysis (MPA), is applied to understand the metabolic capabilities of the co-culture and to elucidate the best conditions in removing nutrients such as Phosphorus (inorganic phosphorous and phosphate) and Nitrogen (nitrates and ammonia). Theoretical yields for Phosphorus removal under photoheterotrophic conditions are calculated, determining their values as 0.042 mmol of PO4/ g DW of C. vulgaris, 19.53 mmol of inorganic Phosphorus /g DW of C. vulgaris and 4.90 mmol of inorganic Phosphorus/ g DW of P. aeruginosa. Similarly, according to the genome-scale biochemical reaction network the theoretical yields for Nitrogen removal are 10.3 mmol of NH3/g DW of P. aeruginosa and 7.19 mmol of NO3 /g DW of C. vulgaris. Thus, this research proves the metabolic capacity of these microorganisms in removing nutrients and their theoretical yields are calculated.


2016 ◽  
pp. 111-123 ◽  
Author(s):  
Jürgen Zanghellini ◽  
Matthias P. Gerstl ◽  
Michael Hanscho ◽  
Govind Nair ◽  
Georg Regensburger ◽  
...  

2018 ◽  
Author(s):  
Jeanne M. O. Eloundou-Mbebi ◽  
Anika Küken ◽  
Georg Basler ◽  
Zoran Nikoloski

AbstractCellular functions are shaped by reaction networks whose dynamics are determined by the concentrations of underlying components. However, cellular mechanisms ensuring that a component’s concentration resides in a given range remain elusive. We present network properties which suffice to identify components whose concentration ranges can be efficiently computed in mass-action metabolic networks. We show that the derived ranges are in excellent agreement with simulations from a detailed kinetic metabolic model of Escherichia coli. We demonstrate that the approach can be used with genome-scale metabolic models to arrive at predictions concordant with measurements from Escherichia coli under different growth scenarios. By application to 14 genome-scale metabolic models from diverse species, our approach specifies the cellular determinants of concentration ranges that can be effectively employed to make predictions for a variety of biotechnological and medical applications.Author SummaryWe present a computational approach for inferring concentration ranges from genome-scale metabolic models. The approach specifies a determinant and molecular mechanism underling facile control of concentration ranges for components in large-scale cellular networks. Most importantly, the predictions about concentration ranges do not require knowledge of kinetic parameters (which are difficult to specify at a genome scale), provided measurements of concentrations in a reference state. The approach assumes that reaction rates follow the mass action law used in the derivations of other types of kinetics. We apply the approach with large-scale kinetic and stoichiometric metabolic models of organisms from different kingdoms of life to show that we can identify a proportion of metabolites to which our approach is applicable. By challenging the predictions of concentration ranges in the genome-scale metabolic network of E. coli with real-world data sets, we further demonstrate the prediction power and limitations of the approach.


2021 ◽  
Vol 1 ◽  
Author(s):  
Yier Ma ◽  
Takeyuki Tamura

Flux balance analysis (FBA) is a crucial method to analyze large-scale constraint-based metabolic networks and computing design strategies for strain production in metabolic engineering. However, as it is often non-straightforward to obtain such design strategies to produce valuable metabolites, many tools have been proposed based on FBA. Among them, GridProd, which divides the solution space into small squares by focusing on the cell growth rate and the target metabolite production rate to efficiently find the reaction deletion strategies, was extended to CubeProd, which divides the solution space into small cubes. However, as GridProd and CubeProd naively divide the solution space into equal sizes, even places where solutions are unlikely to exist are examined. To address this issue, we introduce dynamic solution space division methods based on CubeProd for faster computing by avoiding searching in places where the solutions do not exist. We applied the proposed method DynCubeProd to iJO1366, which is a genome-scale constraint-based model of Escherichia coli. Compared with CubeProd, DynCubeProd significantly accelerated the calculation of the reaction deletion strategy for each target metabolite production. In addition, under the anaerobic condition of iJO1366, DynCubeProd could obtain the reaction deletion strategies for almost 40% of the target metabolites that the elementary flux vector-based method, which is one of the most effective methods in existence, could not. The developed software is available on https://github.com/Ma-Yier/DynCubeProd.


Genetics ◽  
2001 ◽  
Vol 159 (4) ◽  
pp. 1765-1778
Author(s):  
Gregory J Budziszewski ◽  
Sharon Potter Lewis ◽  
Lyn Wegrich Glover ◽  
Jennifer Reineke ◽  
Gary Jones ◽  
...  

Abstract We have undertaken a large-scale genetic screen to identify genes with a seedling-lethal mutant phenotype. From screening ~38,000 insertional mutant lines, we identified >500 seedling-lethal mutants, completed cosegregation analysis of the insertion and the lethal phenotype for >200 mutants, molecularly characterized 54 mutants, and provided a detailed description for 22 of them. Most of the seedling-lethal mutants seem to affect chloroplast function because they display altered pigmentation and affect genes encoding proteins predicted to have chloroplast localization. Although a high level of functional redundancy in Arabidopsis might be expected because 65% of genes are members of gene families, we found that 41% of the essential genes found in this study are members of Arabidopsis gene families. In addition, we isolated several interesting classes of mutants and genes. We found three mutants in the recently discovered nonmevalonate isoprenoid biosynthetic pathway and mutants disrupting genes similar to Tic40 and tatC, which are likely to be involved in chloroplast protein translocation. Finally, we directly compared T-DNA and Ac/Ds transposon mutagenesis methods in Arabidopsis on a genome scale. In each population, we found only about one-third of the insertion mutations cosegregated with a mutant phenotype.


2017 ◽  
Vol 34 (1) ◽  
pp. 124-125 ◽  
Author(s):  
Carl D Christensen ◽  
Jan-Hendrik S Hofmeyr ◽  
Johann M Rohwer

Sign in / Sign up

Export Citation Format

Share Document