Bimodal evolution of Src and Abl kinase substrate specificity revealed using mammalian cell extract as substrate pool

2020 ◽  
Author(s):  
Patrick Finneran ◽  
Margaret Soucheray ◽  
Christopher Wilson ◽  
Renee Otten ◽  
Vanessa Buosi ◽  
...  

AbstractThe specificity of phosphorylation by protein kinases is essential to the integrity of biological signal transduction. While peptide sequence specificity for individual kinases has been examined previously, here we explore the evolutionary progression that has led to the modern substrate specificity of two non-receptor tyrosine kinases, Abl and Src. To efficiently determine the substrate specificity of modern and reconstructed ancestral kinases, we developed a method using mammalian cell lysate as the substrate pool, thereby representing the naturally occurring substrate proteins. We find that the oldest tyrosine kinase ancestor was a promiscuous enzyme that evolved through a more specific last common ancestor into a specific human Abl. In contrast, the parallel pathway to human Src involved a loss of substrate specificity, leading to general promiscuity. These results add a new facet to our understanding of the evolution of signaling pathways, with both subfunctionalization and neofunctionalization along the evolutionary trajectories.

2021 ◽  
Author(s):  
Tess R Malcolm ◽  
Karolina W. Swiderska ◽  
Brooke K Hayes ◽  
Chaille T Webb ◽  
Marcin Drag ◽  
...  

During malarial infection, Plasmodium parasites digest human hemoglobin to obtain free amino acids for protein production and maintenance of osmotic pressure. The Plasmodium M1 and M17 aminopeptidases are both postulated to have an essential role in the terminal stages of the hemoglobin digestion process and are validated drug targets for the design of new dual-target anti-malarial compounds. In this study, we profiled the substrate specificity fingerprints and kinetic behaviors of M1 and M17 aminopeptidases from Plasmodium falciparum and Plasmodium vivax, and the mouse model species, Plasmodium berghei. We found that although the Plasmodium M1 aminopeptidases share a largely similar, broad specificity at the P1 position, the P. falciparum M1 displays the greatest diversity in specificity and P. berghei M1 showing a preference for charged P1 residues. In contrast, the Plasmodium M17 aminopeptidases share a highly conserved preference for hydrophobic residues at the P1 position. The aminopeptidases also demonstrated intra-peptide sequence specificity, particularly the M1 aminopeptidases, which showed a definitive preference for peptides with fewer negatively charged intrapeptide residues. Overall, the P. vivax and P. berghei enzymes had a faster substrate turnover rate than the P. falciparum enzymes, which we postulate is due to subtle differences in structural dynamicity. Together, these results build a kinetic profile that allows us to better understand the catalytic nuances of the M1 and M17 aminopeptidases from different Plasmodium species.


1995 ◽  
Vol 309 (3) ◽  
pp. 927-931 ◽  
Author(s):  
J Srinivasan ◽  
M Koszelak ◽  
M Mendelow ◽  
Y G Kwon ◽  
D S Lawrence

The substrate sequence specificity of the cdc2 protein kinase from Pisaster ochraceus has been evaluated. The peptide, Ac-Ser-Pro-Gly-Arg-Arg-Arg-Arg-Lys-amide, serves as an efficient cdc2 kinase substrate with a Km of 1.50 +/- 0.04 microM and a Vmax. of 12.00 +/- 0.18 mumol/min per mg. The amino acid sequence of this peptide is not based on any sequence in a known protein substrate of the cyclin-dependent kinase, but rather was designed from structural attributes that appear to be important in the majority of cdc2 substrates. The cyclin-dependent enzyme is remarkably indiscriminate in its ability to recognize and phosphorylate peptides that contain an assortment of structurally diverse residues at the P-2, P-1 and P+2 positions. However, peptides that contain a free N-terminal serine or lack an arginine at the P+4 position are relatively poor substrates. These aspects of the substrate specificity of the cdc2 protein kinase are compared and contrasted with the previously reported substrate specificity of a cdc2-like protein kinase from bovine brain [Beaudette, Lew and Wang (1993) J. Biol. Chem. 268, 20825-20830].


2003 ◽  
Vol 10 (10) ◽  
pp. 909-916 ◽  
Author(s):  
Bo Liu ◽  
Ying Han ◽  
Anwarul Ferdous ◽  
David R Corey ◽  
Thomas Kodadek

2015 ◽  
Vol 112 (38) ◽  
pp. 11829-11834 ◽  
Author(s):  
Nathan M. Young ◽  
Terence D. Capellini ◽  
Neil T. Roach ◽  
Zeresenay Alemseged

Reconstructing the behavioral shifts that drove hominin evolution requires knowledge of the timing, magnitude, and direction of anatomical changes over the past ∼6–7 million years. These reconstructions depend on assumptions regarding the morphotype of the Homo–Pan last common ancestor (LCA). However, there is little consensus for the LCA, with proposed models ranging from African ape to orangutan or generalized Miocene ape-like. The ancestral state of the shoulder is of particular interest because it is functionally associated with important behavioral shifts in hominins, such as reduced arboreality, high-speed throwing, and tool use. However, previous morphometric analyses of both living and fossil taxa have yielded contradictory results. Here, we generated a 3D morphospace of ape and human scapular shape to plot evolutionary trajectories, predict ancestral morphologies, and directly test alternative evolutionary hypotheses using the hominin fossil evidence. We show that the most parsimonious model for the evolution of hominin shoulder shape starts with an African ape-like ancestral state. We propose that the shoulder evolved gradually along a single morphocline, achieving modern human-like configuration and function within the genus Homo. These data are consistent with a slow, progressive loss of arboreality and increased tool use throughout human evolution.


1985 ◽  
Vol 107 (24) ◽  
pp. 7008-7018 ◽  
Author(s):  
Debbie C. Crans ◽  
George M. Whitesides

PLoS ONE ◽  
2012 ◽  
Vol 7 (7) ◽  
pp. e40694 ◽  
Author(s):  
Neil Arvin Bretaña ◽  
Cheng-Tsung Lu ◽  
Chiu-Yun Chiang ◽  
Min-Gang Su ◽  
Kai-Yao Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document